
User Manual

TextWrangler™

THE Text Editor for Anyone who Types

Bare Bones Software, Inc.

TextWrangler™
 4.0

Product Design Rich Siegel, Patrick Woolsey, Jim Correia,
Steve Kalkwarf

Product Engineering Jim Correia, Jon Hueras,Steve Kalkwarf,
Rich Siegel, Steve Sisak

Documentation Philip Borenstein, Stephen Chernicoff,
John Gruber, Simon Jester, Jeff Mattson,
Jerry Kindall, Caroline Rose,
Rich Siegel, Patrick Woolsey

Additional Engineering Seth Dillingham – Macrobyte Resources
http://www.macrobyte.net/
Polaschek Computing
http://www.polaschek-computing.com/

Icon Design Ultra Maroon Design
http://www.ultramaroon.com/

updates by Byran Bell
http://www.bryanbell.com/

Info-ZIP © 1990-2009 Info-ZIP. Used under license.

LibNcFTP © 1996-2010 Mike Gleason & NcFTP Software

PCRE Library Package written by Philip Hazel and © 1997-2004
University of Cambridge, England

TextWrangler and the TextWrangler User Manual are copyright ©2003-2012 Bare Bones
Software, Inc. All rights reserved. Produced/published in USA.

http://www.polaschek-computing.com/
http://www.bryanbell.com/
http://www.info-zip.org/pub/infozip/license.html
http://www.info-zip.org/pub/infozip/license.html
http://www.ultramaroon.com/
http://www.ultramaroon.com/

Bare Bones Software, Inc.
P. O. Box 1048
Bedford, MA 01730–01048

(978) 251-0500 main
(978) 251-0525 fax

http://www.barebones.com/

Sales & customer service: sales@barebones.com
Technical support: support@barebones.com

TextWrangler is a trademark of, and BBEdit and “It Doesn’t Suck” are registered
trademarks of Bare Bones Software, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of the copyright holder. The software described in
this document is furnished under a license agreement. Warranty and license
information is included in printed form with the CD-ROM package or in electronic
form for downloaded products, and is presented on the next page of this user manual.

The owner or authorized user of a valid copy of TextWrangler may reproduce this
publication for the purpose of learning to use such software. No part of this publication
may be reproduced or transmitted for commercial purposes, such as selling copies of
this publication or for providing paid for support services.

Macintosh, Mac OS, Mac OS X, Power Macintosh, and AppleScript are trademarks of
Apple, Inc. Intel is a registered trademark of Intel Corporation. All other trademarks
are the property of their respective owners.

TextWrangler License Agreement:
You, the Licensee, assume responsibility for the selection of the program TextWrangler to achieve your intended results, and
for the installation, use, and results obtained from the program. Breaking the package seal and installing the program
constitutes your acceptance of these terms and conditions. If you do not accept these terms and conditions, then do not break
the package seal or install the software.

License:
You may use the program and documentation on any desired number of machines and copy the program and documentation
into any machine-readable or printed form for backup or support of your use of the program and documentation on those
machines, provided that no copy of the program and documentation may be used by anyone other than you.
Your use of the program and documentation is limited solely to internal use. Without limiting the generality of the
foregoing, you may not, directly or indirectly, transfer, convey, distribute, or provide the program or access to the program
to any third party, whether by means of a bundling, publishing, or hosting arrangement, or otherwise and whether or not for
money or other consideration, without the express prior written consent of Bare Bones Software, Inc.
You may not use or copy the program or documentation, or any copy thereof, in whole or in part, except as provided in this
Agreement.
You also may not modify the program or documentation, or any copy thereof, in whole or in part. If you use, copy, modify,
distribute, or transfer the program or documentation, or any copy thereof, in whole or part, except as expressly provided for
in this Agreement, your license is automatically terminated.

Term:
The license is effective on the date you accept this Agreement, and remains in effect until terminated as indicated above or
until you terminate it. If the license is terminated for any reason, you agree to destroy the program and documentation,
together with all copies thereof, in whole or in part, in any form, and to cease all use of the program and documentation.

Limited Warranty and Limitation of Remedies:
The program, documentation and any support from Bare Bones Software, Inc., are provided “as is” and without warranty,
express and implied, including but not limited to any implied warranties of merchantability and fitness for a particular
purpose. In no event will Bare Bones Software, Inc. be liable for any damages, including lost profits, lost savings, or other
incidental or consequential damages, even if Bare Bones Software, Inc. is advised of the possibility of such damages, or for
any claim by you or any third party.

General Terms:
This Agreement can only be modified by a written agreement signed by you and Bare Bones Software, Inc. and changes
from the terms and conditions of this Agreement made in any other manner will be of no effect. If any portion of this
Agreement shall be held invalid, illegal, or unenforceable, the validity, legality, and enforceability of the remainder of the
Agreement shall not in any way be affected or impaired thereby. This Agreement shall be governed by the laws of The
Commonwealth of Massachusetts, without giving effect to conflict of laws provisions thereof. As required by United States
export regulations, you shall not permit export of the program or any direct products thereof to any country to which export
is then controlled by the United States Bureau of Export Administration, unless you have that agency's prior written
approval.
Use of the program and documentation by military and civilian offices, branches or agencies of the U.S. Government is
restricted in accordance with the applicable Federal Acquisition Regulations (under which the program and documentation
constitute “restricted computer software” that is “commercial computer software”) or Department of Defense Federal
Acquisition Regulations Supplement (under which the program and documentation constitute “commercial computer
software” and “commercial computer software documentation”) to that consistent with only those rights as are granted
pursuant to the terms and conditions hereof.

Acknowledgment:
You acknowledge that you have read this agreement, understand it, and agree to be bound by its terms and conditions. You
further agree that it is the complete and exclusive statement of the agreement between you and Bare Bones Software, Inc.
which supersedes all proposals or prior agreements, oral or written, and all other communications between you and Bare
Bones Software, Inc. relating to the subject matter of this agreement.

Info-ZIP License
This is version 2009-Jan-02 of the Info-ZIP license. The definitive version of this
document should be available at ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely
and a copy at http://www.info-zip.org/pub/infozip/license.html.

Copyright ©1990-2009 Info-ZIP. All rights reserved.

For the purposes of this copyright and license, “Info-ZIP” is defined as the following set of
individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly,
Hunter Goatley, Ed Gordon, Ian Gorman, Chris Herborth, Dirk Haase, Greg Hartwig,
Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum, Johnny Lee, Onno van
der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith Owens, George
Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven M.
Schweda, Christian Spieler, Cosmin Truta, Antoine Verheijen, Paul von Behren, Rich
Wales, Mike White.

This software is provided “as is”, without warranty of any kind, express or implied. In no
event shall Info-ZIP or its contributors be held liable for any direct, indirect, incidental,
special or consequential damages arising out of the use of or inability to use this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the above disclaimer and the
following restrictions:

• Redistributions of source code (in whole or in part) must retain the above
copyright notice, definition, disclaimer, and this list of conditions.

• Redistributions in binary form (compiled executables and libraries) must
reproduce the above copyright notice, definition, disclaimer, and this list of
conditions in documentation and/or other materials provided with the distribution.
The sole exception to this condition is redistribution of a standard UnZipSFX
binary (including SFXWiz) as part of a self-extracting archive; that is permitted
without inclusion of this license, as long as the normal SFX banner has not been
removed from the binary or disabled.

• Altered versions--including, but not limited to, ports to new operating systems,
existing ports with new graphical interfaces, versions with modified or added
functionality, and dynamic, shared, or static library versions not from Info-ZIP--
must be plainly marked as such and must not be misrepresented as being the
original source or, if binaries, compiled from the original source. Such altered
versions also must not be misrepresented as being Info-ZIP releases--including,
but not limited to, labeling of the altered versions with the names “Info-ZIP” (or
any variation thereof, including, but not limited to, different capitalizations),
“Pocket UnZip,” “WiZ” or “MacZip” without the explicit permission of Info-ZIP.
Such altered versions are further prohibited from misrepresentative use of the Zip-
Bugs or Info-ZIP e-mail addresses or the Info-ZIP URL(s), such as to imply Info-
ZIP will provide support for the altered versions.

Info-ZIP retains the right to use the names “Info-ZIP,” “Zip,” “UnZip,” “UnZipSFX,”
“WiZ,” “Pocket UnZip,” “Pocket Zip,” and “MacZip” for its own source and binary
releases.

ftp://ftp.info-zip.org/pub/infozip/license.html
ftp://ftp.info-zip.org/pub/infozip/license.html
http://www.info-zip.org/pub/infozip/license.html

Contents

Chapter 1 Welcome to TextWrangler 17
Getting Started . 17
What Is TextWrangler? . 18
How Can I Use TextWrangler? . 18

Editing Source Code – 18
Editing Text Files – 18

Human Interface Notes . 19
Dynamic Menus – 19
Bypassing Options Dialogs – 20
Keyboard Shortcuts for Commands – 20
Contextual Menus – 20
Snappy Palettes – 20
Dialog Box and Sheet Key Equivalents – 20

Feature Highlights . 21
Info on New Features – 21

Discussion Group . 22
Support Services . 22

How to contact us – 22

Chapter 2 Installing TextWrangler 23
Basic Installation . 23

System Requirements – 23
Installing TextWrangler – 24
Checking for Updates – 24
Upgrading from a Previous Version – 24
First Run Configuration – 25

TextWrangler’s Application Support Folders . 25
Using a Global Application Support Folder – 25
Using a Local Application Support Folder – 26
Application Support Folder Contents – 26
Attachment Scripts – 26
Auto-Save Recovery – 26
Color Schemes – 27
Language Modules – 27
Menu Scripts – 27
Plug-Ins – 27
Readme.txt [file] – 27
Scripts – 28
Setup – 28
Shutdown Items – 29
Startup Items – 29
Stationery – 29
Text Filters – 30
Superseded App Support Folders – 30
7

Preference Files and Folders . 30
TextWrangler Preferences File – 30
TextWrangler Preferences Folder – 31

Chapter 3 Working with Files 33
Launching TextWrangler . 34

Startup Items – 34
Creating and Saving Documents . 35

Saving a Copy of a File – 36
File Saving Options – 36
File State – 37
Emacs Local Variables – 38
Saving with Authentication – 38
Saving Compressed Files as bz2 or gzip – 39

Crash Auto-Recovery . 39
Opening Existing Documents . 39

Choosing the Encoding for a Document – 40
Using the Open Command – 41
Reload from Disk – 42
Opening and Viewing Files within Zip Archives – 43
Opening bz2, gzip, and tar Files and Binary plists – 43
Opening Hidden Files – 43
Using the Open from FTP/SFTP Server Command – 43
Using the Open Selection Command – 43
Using the Open File by Name Commands – 44
Using the Open Counterpart Command – 46
Using the Open Recent Command – 46
Using the Reopen using Encoding Command – 46

Quitting TextWrangler . 46
An International Text Primer . 47

International Text in TextWrangler – 47
Unicode – 47
Saving Unicode Files – 48
Opening Unicode Files – 49

Accessing FTP/SFTP Servers . 49
Opening Files from FTP/SFTP Servers – 49
Saving Files to FTP/SFTP Servers – 52

Using TextWrangler from the Command Line . 54
Using Stationery . 54
Hex Dump for Files and Documents . 55
Making Backups . 55
Printing . 56

Text Printing Options – 56

Chapter 4 Editing Text with TextWrangler 59
Basic Editing . 60

Moving Text – 60
Multiple Clipboards – 61
Drag and Drop – 62

Multiple Undo . 62
8 Table of Contents

Window Anatomy . 63
The Toolbar – 63
The Split Bar – 64
The Navigation Bar – 65
The File List – 68
The Status Bar – 70
The Gutter and Folded Text Regions – 71

The View Menu . 73
Text Display – 73
Show/Hide Toolbar – 74
Show/Hide Navigation Bar – 74
Show/Hide Editor – 74
Show/Hide Files – 74
Hide Currently Open Documents – 74
Show/Hide Recent Documents – 74
Balance – 74
Balance & Fold – 74
Fold Selection – 74
Unfold Selection – 75
Collapse Enclosing Fold – 75
Collapse All Folds – 75
Expand All Folds – 75
Previous Document/Next Document – 75
Move to New Window – 75
Open in Additional Window – 75
Reveal in Finder – 75
Go Here in Terminal – 75
Go Here in Disk Browser – 76

Cursor Movement and Text Selection . 76
Clicking and Dragging – 76
Arrow Keys – 77
CamelCase Navigation – 77
Rectangular Selections – 77
Working with Rectangular Selections – 78
Scrolling the View – 80
The Delete Key – 81
The Numeric Keypad – 81
Go To Line Command – 82
Function Keys – 82
Resolving URLs – 82

Text Options . 83
Editing Options – 83
Display Options – 84

How TextWrangler Wraps Text . 86
Soft Wrapping – 86
Hard Wrapping – 87

The Insert Submenu . 90
Inserting File Contents – 90
Inserting File & Folder Paths – 90
Inserting a Folder Listing – 90
Inserting a Page Break – 91
Inserting Time Stamps – 91
Inserting an Emacs Variable Block – 91
Table of Contents 9

Comparing Text Files . 91
Compare Against Disk File – 93
Multi-File Compare Options – 94

Using Markers . 95
Setting Markers – 95
Clearing Markers – 95
Using Grep to Set Markers – 96

Spell Checking Documents . 96
Check Spelling As You Type – 96
Manual Spell Checking – 97
The Spelling Panel – 97
 – 98

Chapter 5 Text Transformations 99
Text Menu Commands . 99

Apply Text Filter – 99
Apply Text Filter <last filter> – 100
Exchange Characters – 100
Change Case – 100
Shift Left / Shift Right – 101
Un/Comment Selection – 101
Hard Wrap – 101
Add Line Breaks – 102
Remove Line Breaks – 102
Convert to ASCII – 102
Educate Quotes – 102
Straighten Quotes – 102
Add/Remove Line Numbers – 102
Prefix/Suffix Lines – 103
Sort Lines – 103
Process Duplicate Lines – 104
Process Lines Containing – 105
Rewrap Quoted Text – 106
Increase and Decrease Quote Level – 106
Strip Quotes – 106
Zap Gremlins – 107
Entab – 108
Detab – 108
Normalize Line Endings – 108

Chapter 6 Windows & Palettes 109
Window Menu . 109

Minimize Window – 109
Bring All to Front – 109
Palettes – 109
Save Default <type of >Window – 111
Arrange – 112
Cycle Through Windows – 112
Exchange with Next – 112
Synchro Scrolling – 112
Window Names – 112
Zoom (key equivalent only) – 112
10 Table of Contents

Chapter 7 Searching 115
Search Windows . 115
Basic Searching and Replacing . 116

Search Settings – 118
Special Characters – 118

Multi-File Searching . 119
Starting a Search – 120
Find All and Multi-File Search Results – 121
Specifying the Search Set – 122
Saved Search Sources – 124
Multi-File Search Options – 124
File Filters – 124
Searching SCM Directories – 127

Multi-File Replacing . 127
Live Search . 128
Search Menu Reference . 129

Find – 129
Multi-File Search – 129
Search in … (Disk or Results Browser) – 129
Live Search – 129
Find Next/Previous – 130
Find All – 130
Find Selected Text/Previous Selected Text – 130
Use Selection for Find – 130
Use Selection for Find (grep) – 130
Use Selection for Replace – 130
Use Selection for Replace (grep) – 130
Replace – 130
Replace All – 131
Replace to End – 131
Replace & Find Again – 131
Go to Line – 131
Go to Center Line – 131
Go to Previous/Next Error – 131
Go to Function Start/End – 131
Go to Previous/Next Function – 131
Jump Back – 132
Jump Forward – 132
Set Jump Mark – 132
Find Differences – 132
Compare Two Front Documents – 132
Compare Against Disk File – 132
Apply to New – 132
Apply to Old – 132
Compare Again – 132
Find in Reference – 133

Chapter 8 Searching with Grep 135
What Is Grep or Pattern Searching? . 136
Table of Contents 11

Writing Search Patterns . 136
Most Characters Match Themselves – 136
Escaping Special Characters – 136
Wildcards Match Types of Characters – 138
Character Classes Match Sets or Ranges of Characters – 140
Matching Non-Printing Characters – 141
Other Special Character Classes – 142
Quantifiers Repeat Subpatterns – 143
Combining Patterns to Make Complex Patterns – 144
Creating Subpatterns – 144
Using Backreferences in Subpatterns – 145
Using Alternation – 146
The “Longest Match” Issue – 146
Non-Greedy Quantifiers – 147

Writing Replacement Patterns . 148
Subpatterns Make Replacement Powerful – 148
Using the Entire Matched Pattern – 148
Using Parts of the Matched Pattern – 149
Case Transformations – 150

Examples . 151
Matching Identifiers – 151
Matching White Space – 151
Matching Delimited Strings – 152
Marking Structured Text – 152
Marking a Mail Digest – 153
Rearranging Name Lists – 153

Advanced Grep Topics . 153
Matching Nulls – 154
Backreferences – 154
POSIX-Style Character Classes – 155
Non-Capturing Parentheses – 156
Perl-Style Pattern Extensions – 157
Comments – 157
Pattern Modifiers – 158
Positional Assertions – 159
Conditional Subpatterns – 161
Once-Only Subpatterns – 162
Recursive Patterns – 164

Recommended Books and Resources . 165

Chapter 9 Browsers 167
Browser Overview . 167

List Pane – 167
Toolbar – 168
Text View Pane – 168
Splitter – 168

Disk Browsers . 169
Disk Browser Controls – 169
Contextual Menu Commands – 170
Dragging Items – 170
Using the List Pane in Disk Browsers – 170

Search Results Browsers . 171
Error Results Browsers . 172
12 Table of Contents

Chapter 10 Preferences 173
The Preferences Window . 173

Searching the Preferences – 175
Restore Defaults – 175

Appearance Preferences . 175
Toolbar – 175
Navigation Bar – 176
Editing Window – 176
Text Status Bar – 177
List Display Font – 178

Application Preferences . 178
Open documents into the front window... – 178
Automatically refresh documents as they change on disk – 178
Remember the N most recently used items – 178
When TextWrangler becomes active – 179
Reopen documents that were open at last quit – 179
Automatically check for updates – 179

Editing Preferences . 180
Use “hard” lines in soft-wrapped views – 180
Soft-wrapped line indentation – 180
Line spacing – 180

Editor Defaults Preferences . 180
Auto-indent – 180
Balance while typing – 180
Use typographer’s quotes – 181
Auto-expand tabs – 181
Show invisible characters – 181
Check spelling as you type – 181
Default font – 182
Tab Width – 182
This option controls the default number of spaces that TextWrangler
uses to represent the width of a tab character. – 182
Soft Wrap Text – 182

Keyboard Preferences . 182
“Home” and “End” Keys – 182
Enter key generates Return – 182
Allow Tab key to indent text blocks – 182
Enable Shift-Delete for forward delete – 183
Option-¥ on Japanese keyboards – 183
Emulate Emacs key bindings – 183

Languages Preferences . 183
Installed Languages – 183
Custom Extension Mappings – 184

Menus & Shortcuts Preferences . 184
Menu Key Equivalents and Item Visibility – 185
Allow menu key equivalents to autorepeat – 185
Table of Contents 13

Printing Preferences . 185
Print using document’s font – 185
Printing font – 185
Frame printing area – 186
Print page headers – 186
Print full pathname – 186
Time stamp – 186
Print line numbers – 186
1-inch Gutter – 186
Print color syntax – 186

Text Colors Preferences . 186
How to Change an Element’s Color – 187
General – 187
Source Code – 187
Markup – 187

Text Encodings Preferences . 188
Default text encoding for new documents – 188
If file’s encoding can’t be guessed, try – 188

Text Files Preferences . 188
Line breaks – 188
Ensure file ends with line break – 189
Strip trailing whitespace – 189
Backups – 189

Expert preferences settings . 190
The Setup Window . 190

Bookmarks – 190
Filters – 191
Patterns – 191

Chapter 11 Scripting TextWrangler 193
AppleScript Overview . 193

About AppleScript – 194
Scriptable Applications and Apple Events – 194
Reading an AppleScript Dictionary – 195
Recordable Applications – 200
Saving Scripts – 201
Using Scripts with Applications – 201
Scripting Resources – 202

Using AppleScripts in TextWrangler . 203
Recording Actions within TextWrangler – 203
The Scripts Menu – 204
The Scripts Palette – 205
Organizing Scripts – 205
Attaching Scripts to Menu Items – 206
Attaching Scripts to Events – 207
Filtering Text with AppleScripts – 211

TextWrangler’s Scripting Model . 212
Script Compatibility – 212
Getting and Setting Properties – 214
Performing Actions – 215
Arranging Documents and Windows – 218
Common AppleScript Pitfalls – 220
14 Table of Contents

Chapter 12 Unix Scripting and the Command-Line 221
Configuring TextWrangler . 221

Syntax Coloring – 221
Switching Between Counterpart Files – 222

TextWrangler and the Unix Command Line . 222
Installing the Command Line Tools – 222
The “edit” Command Line Tool – 222
The “twdiff” Command Line Tool – 223
The “twfind” Command Line Tool – 223

Unix Scripting: Perl, Python, Ruby, Shells, and more! 225
Using Unix Scripts – 225
Language Resources – 225
Setting Environment Variables for GUI Apps – 226
Line Endings, Permissions and Unix Scripts – 226
Configuring Perl – 227
Configuring Python – 227
Configuring Ruby – 227
Shebang Menu – 227
Filters and Scripts – 229
Filters – 229
Scripts – 230
Additional Notes – 230

Chapter 13 Language Modules 233
Language Modules . 233

Installing Language Modules – 233
Overriding Existing Modules – 234
Codeless Language Modules – 234
Code-based Language Modules – 234
Language Module Compatibility – 234

Plug-In Obsolescence . 235

Appendix A Command Reference 237
Keyboard Shortcuts for Commands . 237
Assigning Keys to Menu Commands . 238

Available Key Combinations – 238
Listing by Menu and Command Name . 239
Listing by Default Key Equivalent . 244

Appendix B Editing Shortcuts 249
Mouse Commands . 249
Arrow and Delete Keys . 250
Emacs Key Bindings . 251

Using universal-argument – 252
Table of Contents 15

Appendix C Codeless Language Modules 253
Creating a Module . 253

Required Elements – 254
Installing Codeless Language Modules – 254
Function Scanning with Regular Expressions – 254
Spell Checking Code Runs – 255
Starting from a Template – 255

Language Keys and Properties . 257

Index 267
16 Table of Contents

C H A P T E R

1
Welcome to
TextWrangler
This chapter introduces you to TextWrangler, a high-performance text editor for
the Macintosh.

In this chapter
Getting Started . 17
What Is TextWrangler? . 18
How Can I Use TextWrangler? . 18

Editing Source Code – 18
Editing Text Files – 18

Human Interface Notes . 19
Dynamic Menus – 19 • Bypassing Options Dialogs – 20
Keyboard Shortcuts for Commands – 20 • Contextual Menus – 20
Snappy Palettes – 20 • Dialog Box and Sheet Key Equivalents – 20

Feature Highlights . 21
Info on New Features – 21

Discussion Group . 22
Support Services. 22

Getting Started
Thank you for selecting TextWrangler, a high-performance text editor for the
Macintosh.

If you are new to TextWrangler, we recommend that you read at least Chapters 1
through 4 of this manual to familiarize yourself with the installation and basic
operation of TextWrangler. You may also wish to read or preview any other
chapters that cover features you frequently use. After you have installed
TextWrangler, the best way to learn it is to use it. Complete online assistance is
available from the Help menu.

If you have used earlier versions of TextWrangler, we recommend that you read at
least Chapter 1 for an overview of significant changes in this version, and Chapter
2 for information relevant to installation and upgrading.
17

What Is TextWrangler?
TextWrangler is a high-performance HTML and text editor. Unlike a word processor,
which is designed for preparing printed pages, a text editor focuses on providing a means of
producing and changing content. Thus, TextWrangler does not offer fancy formatting
capabilities, headers and footers, graphics tools, a thesaurus, or similar staples of feature-
laden “office” software. Instead, it focuses on helping you manipulate text in ways that
word processors generally cannot.

In service of this goal, TextWrangler offers powerful regular expression–based (“grep”)
search and replace, multi-file search, sophisticated text transformations, intelligent text
coloring, and other features not usually found (or missed) in word processors.

TextWrangler also has features that make it easier to edit specific kinds of text, such as
source files for programming languages.

How Can I Use TextWrangler?
Use TextWrangler any time you need to create or edit source files, or text documents of any
kind. Whether you need to find (or change!) all the occurrences of some text in a set of
files, or modify or reformat large text files of any sort (or even make quick tweaks to a web
page), TextWrangler is the right tool for the job.

Editing Source Code
TextWrangler is a powerful tool for editing numerous types of source code, with the following
features:

• Syntax coloring helps you read your code and find simple errors.

• The function pop-up menu lets you can quickly find the functions in your files.

• Find Differences lets you compare two versions of a text file and merge the
differences.

• Find in Reference lets you look up documentation in the Developer Help Center.

Editing Text Files
TextWrangler is a full-featured text editor that makes it easy to create, edit, and search any sort of
text file, such as release notes, articles, books, or TeX documents. It’s also an excellent tool for pre-
and post-processing any files that contain textual data, such as database exports or server logs.

• Grep searching lets you find and change text that matches a set of conditions that
you specify.

• Multi-file search and replace lets you quickly search and modify text files
anywhere on your computer.

• Numerous text manipulation and processing commands allow you to reformat or
rearrange the information in text files, e.g. add or remove hard line breaks, change
the case of selected text, or remove duplicate lines from a list.
18 Chapter 1: Welcome to TextWrangler

• Extensive AppleScript support allows you to combine multiple processing steps
for reuse, and enables you to easily transfer data into and out of TextWrangler to
other applications

• International text support lets you edit Unicode files (UTF-8 and UTF-16), as well
as files saved in most non-Roman single-byte scripts.

• FTP and SFTP support lets you open and save text files located on remote servers.

Human Interface Notes
TextWrangler enhances the behavior of its menus and dialogs as described in this section.

Dynamic Menus
IMPORTANT Many of TextWrangler’s pull-down menus are dynamic: if you hold down the Shift,

Option, or Control key while a menu is open, you can see some of the items change. The
illustration below shows what the File menu looks like normally (left) and when you hold
down the Option key (right).

You can use the Shift, Option, or Control keys when you choose an item from a menu or
when you use the Command-key equivalents.
Human Interface Notes 19

Bypassing Options Dialogs
You may have noticed that commands that require additional settings to be made before
they are performed appear on the menu with ellipses after their names. To bypass this step
and use the command with its most recent settings, hold down the Option key while
selecting the menu item. For example, “Zap Gremlins…” in the Text menu becomes “Zap
Gremlins” when the Option key is pressed and, when chosen, will zap gremlins in the
frontmost text document using the current settings.

Keyboard Shortcuts for Commands
Many of TextWrangler’s commands have keyboard shortcuts. TextWrangler lets you
reassign the shortcuts for any menu item, clippings entry, plug-in, or script to suit your own
way of working.

To change the keyboard shortcut for any menu command as well as any available scripts
and text filters, go to the Menus & Shortcuts preference panel.

Contextual Menus
When you Control-click on selected text or at the insertion point in a text window,
TextWrangler’s contextual menu will display a set of commands relevant to that location or
text, as well as some appropriate standard commands (such as Cut/Copy/Paste, or Check
Spelling) so you do not have to hunt around in the menu bar for them.

Snappy Palettes
When you move or resize palettes (floating windows), they will “snap” to the edges of the
screen and the edges of other palettes. You can override this behavior by holding down the
Shift key while dragging or resizing.

Dialog Box and Sheet Key Equivalents
You can use key equivalents to click buttons or select options in most of TextWrangler’s
dialog boxes and sheets. Certain keys have the same meaning in all dialogs and sheets:

• Pressing either the Return or Enter key is the same as clicking the default button.

• Typing Command-period or pressing the Escape key is the same as clicking the
Cancel button.

• You can use the Cut, Copy, Paste, Clear, and Select All commands (either from the
Edit menu or with their Command-key equivalents) in any text field.
20 Chapter 1: Welcome to TextWrangler

To see the other key equivalents for a particular dialog or sheet, hold down the Command
key. After a brief delay, labels appear next to any buttons or options which have key
equivalents. For example, this is the Process Lines Containing sheet with Command-key
equivalents visible:

TextWrangler waits briefly before displaying the Command-key equivalents so that you
can type a sequence quickly without encountering visible flicker.

Feature Highlights
TextWrangler 4 offers many powerful features for editing and processing text and code,
and for managing your work. Here are some highlights:

• Flexible multi-document editing windows

• Modeless Find and Multi-File Search windows provide a consistent, familiar
interface to TextWrangler legendary search and replace capabilities

• In-window Live Search highlights and quickly jumps though matches

• Find Differences detects sub-line differences

• Live display of document statistics: character, word, and line count

• Transparent support for viewing (browsing) files within bz2, gzip, and Zip
archives.

as well as all the powerful core features that TextWrangler is known for.

Info on New Features
In addition to these major features, TextWrangler 4 also contains numerous additional
convenience features and interface refinements, as well as performance enhancements and
bug fixes. For a detailed summary of changes and bug fixes, please refer to the current
release notes, which are available in the TextWrangler Support section of our web site.

http://www.barebones.com/support/textwrangler/
current_notes.html
Feature Highlights 21

http://www.barebones.com/support/textwrangler/current_notes.html
http://www.barebones.com/support/textwrangler/current_notes.html

Discussion Group
We maintain a public Google Group where our customers can discuss and share knowledge
about using TextWrangler.

http://groups.google.com/group/textwrangler

Support Services
If you need information about using TextWrangler (or any of our other products) the
Support area of our web site offers up-to-date details:

 http://www.barebones.com/support/

You'll find a wide range of information there, including:

• Frequently Asked Questions (FAQ) — Information and answers for commonly
encountered questions and problems. We strongly recommend you check the
TextWrangler FAQs before resorting to any other means of inquiry.

• Product Updates — The latest maintenance versions of our products are always
available for download.

as well as access to language modules, sample scripts, developer info, and other materials.

How to contact us
If you have a registered copy of TextWrangler (or any other Bare Bones product), and you
can’t find the information you need on our web site, or if you encounter any problems with
the software, please use the contact form on our web site or send email to:

support@barebones.com

Note We do not offer telephone support. Please refer to the support resources available on
our web site for information and assistance, or contact us via email.
22 Chapter 1: Welcome to TextWrangler

http://www.barebones.com/
http://groups.google.com/group/textwrangler

C H A P T E R

2
Installing
TextWrangler
This chapter tells you how to install TextWrangler on your Macintosh. It also
describes the files TextWrangler creates, where it puts them, and how to install or
remove optional components of TextWrangler.

In this chapter
Basic Installation . 23

System Requirements – 23 • Installing TextWrangler – 24
Checking for Updates – 24 • Upgrading from a Previous Version – 24
First Run Configuration – 25

TextWrangler’s Application Support Folders . 25
Using a Global Application Support Folder – 25
Using a Local Application Support Folder – 26
Application Support Folder Contents – 26
Language Modules – 27 • Menu Scripts – 27 • Scripts – 28
Shutdown Items – 29 • Startup Items – 29 • Stationery – 29
Superseded App Support Folders – 30 • Upgrading – 30

Preference Files and Folders . 30
TextWrangler Preferences File – 30
TextWrangler Preferences Folder – 31

Basic Installation
TextWrangler is supplied as a single application file. Specific system
requirements and installation instructions are described below, and the
organization of TextWrangler’s supporting files is described in subsequent
sections.

System Requirements
IMPORTANT TextWrangler 4.0 requires Mac OS X 10.6 or later (10.6.8, or 10.7.3 or later

recommended). The software will not run on Mac OS 9 or any earlier versions of
Mac OS X, and will not run on PowerPC-based machines.
23

Installing TextWrangler
If you download TextWrangler directly, you will receive a standard disk image (“.dmg”)
file. Your web browser may automatically mount the disk image once the download is
complete; otherwise, you should double-click on the disk image file to mount it. Once the
disk image is mounted, drag the “TextWrangler” application over the adjacent icon for the
Applications folder and drop it there to copy TextWrangler onto your Mac’s hard drive.
You can then dismount (eject) the disk image and discard the “.dmg” file.

If you obtain TextWrangler through the Mac App Store, you must install it via the App
Store application.

Checking for Updates
TextWrangler offers the option to automatically check for updates; this behavior is
controlled by the “Software Update” option in the Application preferences panel. You can
also directly check for updates at any time by choosing Check for Updates in the
TextWrangler (application) menu.

In order to update TextWrangler when future versions become available, you need only
apply the update when prompted. (Alternatively, you may quit TextWrangler, and manually
replace your existing copy with the updated version.) The first time you launch a newer
version of the software, TextWrangler will prompt you for any further actions which may
be needed, such as updating the command-line tools.

Note Copies of TextWrangler obtained through the Mac App Store do not include the update
check feature; instead, updates will be delivered through the App Store app.

Upgrading from a Previous Version
IMPORTANT If you are upgrading from any version prior to TextWrangler 3.0, in addition to installing

the current application, you will need to manually copy over any items you wish to use
from your existing “TextWrangler Support” folder into TextWrangler’s application support
folder. You should not simply rename your existing “TextWrangler Support” folder.

Please carefully read the remainder of this chapter, since the organization of TextWrangler
4’s supporting files has changed considerably. We have provided specific suggestions and
tips for transferring your customized support items in each category.
24 Chapter 2: Installing TextWrangler

First Run Configuration
The first time you launch TextWrangler, it will display the “Welcome to TextWrangler”
dialog. This dialog allows you to choose whether to register TextWrangler, and whether to
install (or update) TextWrangler’s command line tools.

TextWrangler’s Application Support
Folders
TextWrangler’s application support folder contains items which define or extend
TextWrangler’s capabilities, including language modules, scripts, and text filters. These
items are organized into subfolders according to their purpose (described below).

IMPORTANT TextWrangler’s application support folder must be present in either or both of the following
locations:

• Global (items available to all users):
/Library/Application Support/TextWrangler/

• Local (user-specific items):
~/Library/Application Support/TextWrangler/

By default, TextWrangler creates only the local application support folder.

Note Use of the ~ character in folder path descriptions is customary Unix shorthand for the
location of your home directory. If written out in full, this path would be
“/Users/<username>/Library/Application Support/TextWrangler/”.

Using a Global Application Support Folder
You can use a global application support folder to provide a common set of supporting
items in TextWrangler to each user of the machine.
TextWrangler’s Application Support Folders 25

Users whose accounts do not have admin privileges will not be able to modify the contents
of a global application support folder, since it resides in the system hierarchy. This
arrangement can be advantageous when configuring the software for use in shared-machine
environments, such as labs or common-area workstations.

However, if such an arrangement is not desirable for your purposes, you should not create a
global application support folder. Instead, each user can maintain their own local
application support folder for TextWrangler, which they may add items to, or remove items
from, at will.

Using a Local Application Support Folder
If a local application support folder does not exist when TextWrangler starts up,
TextWrangler will create this folder together with its standard subfolders, to which you can
add any appropriate items. None of these folders are essential for doing basic tasks with
TextWrangler, and you can remove any or all of them that you don’t use.

Application Support Folder Contents
TextWrangler’s application support folders contain various subfolders, each of which holds
a specific type of support item. As indicated, items in some subfolders can be loaded from
both the global and local application support folders; other items may only be used from a
specific location.

If there are multiple copies of any language modules, TextWrangler will use the latest
version regardless of location. For all other items, TextWrangler lists the global and local
sets separately.

To prevent alias loops, TextWrangler will not follow aliases to folders that are placed inside
any of the subfolders within the application support folder. We also recommend that you do
not try to share scripts between TextWrangler and other applications, and that you not make
aliases to any items located on remote (server) volumes.

Attachment Scripts
[Local only]

This folder does not exist by default, but you may create it at any time. The Attachment
Scripts folder contains AppleScripts which are run at specific points: when TextWrangler
starts or quits; and when documents are open, saved, and closed.

Auto-Save Recovery
[Local only]

TextWrangler will automatically create this folder. The Auto-Save Recovery folder
contains information which TextWrangler can use to recover the contents of unsaved
documents after a crash, or to restore them at launch. Removing items from this folder can
cause data loss.
26 Chapter 2: Installing TextWrangler

Color Schemes
[Local only]

TextWrangler will automatically create this folder when needed. The Color Schemes folder
stores any custom color schemes which you have saved within the Text Colors preference
panel (or which you have download and copied over). Each scheme is stored within a
separate “.bbcolors” file.

Language Modules
[Global, Local]

TextWrangler does not create this folder by default, but will do so if necessary. The
Language Modules folder allows you to add syntax coloring and function navigation
support for additional languages by installing language modules.

IMPORTANT Do not attempt to extract or modify the language modules contained in the
TextWrangler application bundle.

A list of additional modules from third-party developers is available on our web site, or you
may create your own compiled or codeless language modules (see “Codeless Language
Modules” on page 234).

Upgrading You should move or copy over any compatible third-party language modules that you
wish to preserve.

Menu Scripts
[Local only]

This folder does not exist by default, but you may create it. The Menu Scripts folder
contains AppleScripts that are attached to TextWrangler menu items. (For more details on
using menu scripts, please see “Attaching Scripts to Menu Items” on page 206.)

Upgrading You should move or copy over any menu scripts that you wish to preserve.

Plug-Ins
IMPORTANT TextWrangler 4.0 does not support plug-ins from old versions, and will not load any items

present in this folder.

If you used any third-party commercial plug-in, please contact its developer for
information on alternative solutions.

Readme.txt [file]
[Local only]

This file contains an abbreviated description of the default contents of TextWrangler’s
application support folder.
TextWrangler’s Application Support Folders 27

Scripts
[Global, Local]

TextWrangler will automatically create this folder if it does not exist. The Scripts folder
may contain AppleScript files, Automator workflows, text factories created by BBEdit, and
executable Unix files (scripts). Items placed in this folder will appear in the Scripts menu
(left), and you may place items within subfolders (up to four levels deep) to organize them.

You may run these items from the Scripts menu, the floating Scripts palette, or via assigned
key equivalents. (You may use the Menus & Shortcuts preference panel to assign a key
equivalent to any item in the Scripts menu.)

TextWrangler runs such items by simply loading the item and calling it directly, without
providing any inputs. (Naturally, AppleScript scripts and Automator actions may query
TextWrangler for more information, and Unix scripts may obtain information from the
environment variables that TextWrangler sets, while text factories will use their stored
target list if any.)

Upgrading The first time you launch TextWrangler 4, it will copy all of your existing Unix scripts
into this folder.

If you are upgrading from a version prior to 3.0, you must instead manually move or
copy over any customized scripts that you wish to preserve. Note also that scripts
written for use with such older versions of TextWrangler may no longer work. (Please
see Chapters 12 and 13 for more details and tips on modifying your existing
AppleScripts and Unix filters & scripts.)

Setup
[Local only]

TextWrangler will automatically create this folder if it does not exist. The Setup folder
contains configuration data which previous versions stored in either the preferences file
proper or in the “com.barebones.textwrangler.preferenceData” preference folder, including:
stored file filters, FTP/SFTP bookmarks, grep patterns, and key bindings.

The Setup folder may contain any or all of the following data files.

File Filters.filefilters
TextWrangler stores all user-defined file filter patterns in this file. You should not attempt
to directly edit the contents of this file; instead, please use the Filters panel of the Settings
window to add, modify, or remove stored grep patterns.

FTP Bookmarks.xml
TextWrangler stores user-defined FTP and SFTP bookmarks in this file. You should not
attempt to directly edit the contents of this file; instead, please use the Bookmarks panel of
the Settings window to add, modify, or remove bookmarks.

Grep Patterns.xml
TextWrangler stores user-defined search patterns in this XML file. You should not attempt
to directly edit the contents of this file; instead, please use the Patterns panel of the Settings
window to add, modify, or remove stored grep patterns.

Upgrading If you created any custom grep patterns in a previous version, TextWrangler will
import those patterns; otherwise, TextWrangler will create a default set of patterns.
28 Chapter 2: Installing TextWrangler

Menu Shortcuts.xml
TextWrangler stores keyboard shortcuts for menu commands in this XML file.

Not Menu Shortcuts.xml
TextWrangler stores other keyboard shortcuts in this XML file.

Shutdown Items
[Local only]

This folder does not exist by default, but you may create it at any time. The items in this
folder are opened when you quit TextWrangler. Usually, this function is used to run scripts
of some sort.

Shutdown items are run after all windows have been closed, and only if TextWrangler is
actually quitting. Thus, if you wish to run any items as the immediate result of a Quit
command, you should write a menu script attached to TextWrangler•Quit.

Note In some previous versions of TextWrangler, shutdown items were run before all
windows were closed, and were run whenever the application was told to quit (either
by the Quit menu command or via the scripting interface), regardless of whether it
actually quit or not.

Upgrading You should move or copy over any shutdown items that you wish to preserve.

Startup Items
[Local only]

This folder does not exist by default, but you may create it at any time. When launched,
TextWrangler will open any items it finds in this folder.

If the items present are text files or other documents of a type that TextWrangler knows
how to handle, TextWrangler will open them directly. If you place a compiled AppleScript
in this folder, TextWrangler will execute the script. If you place a folder alias here,
TextWrangler will open a disk browser window based at that folder.

If you place other types of items in this folder, TextWrangler will ask the Finder to open
them.

Upgrading You should move or copy any file or application aliases that you wish to preserve. If
you have any AppleScripts startup items, please see the preceding upgrade note for
the Scripts folder about script compatibility.

Stationery
[Global, Local]

This folder does not exist by default, but you may create it at any time. The Stationery
folder contains stationery files for use with TextWrangler’s New with Stationery command,
and the Stationery List palette. Stationery files may be placed within subfolders (up to four
levels deep) to organize them.

You can hide, or show, all items included from the global folder by using the menu item
“Hide/Show Library Stationery”.

Upgrading You should move or copy over any stationery documents that you wish to preserve.
TextWrangler’s Application Support Folders 29

Text Filters
[Local]

This folder does not exist by default, but you may create it at any time. The Text Filters
folder contains executable items, such as compiled AppleScripts, Automator workflows,
text factories created by BBEdit, and Unix filters, which you may apply to the frontmost
document via the Apply Text Filter command in the Text menu.

When you apply such an item, TextWrangler will pass either the selected text (if any) or the
contents of the entire document on STDIN to Unix executables and filters, as a reference to
a ‘RunFromTextWrangler’ entry point in AppleScripts, as text input to Automator
workflows, and as a source to text factories. (If an AppleScript script does not have a
‘RunFromTextWrangler’ entry point, TextWrangler will call its run handler, again passing
a reference to the current selection range.)

AppleScript scripts and Automator workflows should return a string which TextWrangler
will use to replace the selection range, while Unix filters should write to STDOUT.

Upgrading The first time you launch TextWrangler 4, it will copy all of your existing Unix filters
into this folder.

Superseded App Support Folders
Upgrading TextWrangler 4 no longer uses the Text Factories or Unix Support folders, though these

folders may exist if they were created by a prior version. Instead, the first time you launch
TextWrangler 4, it will copy all existing Unix scripts into the Scripts folder, and all existing
Unix filters into the Text Filters folder.

Preference Files and Folders
When you start up TextWrangler, it may create the files and folders noted in this section.

TextWrangler Preferences File
All of TextWrangler’s basic preference settings are stored in the file “~/Library/
Preferences/com.barebones.textwrangler.plist”, which is created and maintained using
standard system services. In addition to the settings documented in Chapter 10, you may
adjust additional expert preference settings outside of TextWrangler by issuing suitable
“defaults write” commands. For a complete list of available expert preference settings,
please see the “Expert Preferences” page of the built-in Help book. (To open the Help book,
choose “TextWrangler Help” in the “Help” menu.)

Upgrading TextWrangler 4.0 will import and use any relevant preference settings from
TextWrangler 3.0 or later, provided that prefs file is present.
30 Chapter 2: Installing TextWrangler

TextWrangler Preferences Folder
By default, TextWrangler stores ancillary preference data in the folder “~/Library/
TextWrangler” so as to comply with current OS guidelines. (Earlier versions stored such
data in the folder “~/Library/Preferences/com.barebones.textwrangler.PreferenceData/”
and TextWrangler 4 will continue to use that folder if it already exists.)

The standard contents of this folder are as follows.

Document State.plist
TextWrangler stores state information for individual documents in this file.

Recent Files & Favorites
This folder is no longer used and may be deleted.

Recent Folders & Favorites
This folder is no longer used and may be deleted.

Save Application State.appstate
TextWrangler stores application state info in this file.

Saved Sources.xml
TextWrangler stores all user-defined search sources in this file.
Preference Files and Folders 31

32 Chapter 2: Installing TextWrangler

C H A P T E R

3
Working with Files
This chapter discusses how to use TextWrangler to manipulate text files.

In this chapter
Launching TextWrangler . 34

Startup Items – 34
Creating and Saving Documents . 35

Saving a Copy of a File – 36 • File Saving Options – 36
File State – 37 • Emacs Local Variables – 38
Saving with Authentication – 38
Saving Compressed Files as bz2 or gzip – 39

Crash Auto-Recovery . 39
Opening Existing Documents . 39

Choosing the Encoding for a Document – 40
Using the Open Command – 41 • Reload from Disk – 42
Opening and Viewing Files within Zip Archives – 43
Opening bz2, gzip, and tar Files and Binary plists – 43
Opening Hidden Files – 43
Using the Open Recent Command – 46
Using the Reopen using Encoding Command – 46
Using the Open Selection Command – 43

Quitting TextWrangler . 46
An International Text Primer . 47

International Text in TextWrangler – 47 • Unicode – 47
Saving Unicode Files – 48 • Opening Unicode Files – 49

Accessing FTP/SFTP Servers . 49
Opening Files from FTP/SFTP Servers – 49
Saving Files to FTP/SFTP Servers – 52
Using TextWrangler from the Command Line – 54

Using TextWrangler from the Command Line. 54
Using Stationery . 54
Hex Dump for Files and Documents . 55
Making Backups. 55
Printing . 56

Text Printing Options – 56
33

Launching TextWrangler
To launch TextWrangler, double-click the TextWrangler application icon or a TextWrangler
document. Holding down the following keys at launch has the indicated effects, overriding
any startup options set in the Application preference panel. When one of these keys is held
down, TextWrangler will beep after it finishes launching.

Startup Items
When launched, TextWrangler will look for a folder named Startup Items in the its
application support folder (see “TextWrangler stores all user-defined search sources in this
file.” on page 31). If this folder is found, TextWrangler will open any items it finds in the
folder.

If the items present are text files or other files of a type that TextWrangler knows how to
handle, TextWrangler will open them directly. If you place a compiled AppleScript in this
folder, TextWrangler will execute the script. If you place a folder alias here, TextWrangler
will open a disk browser window based at that folder. If you place other types of items in
this folder, TextWrangler will ask the Finder to open them.

If you wish, you may place the actual Startup Items folder in any convenient location,
create an alias to it, and place the resulting alias in TextWrangler’s application support
folder. Be sure to name the alias “Startup Items” so that TextWrangler can locate it.

Modifier Function

Option Suppress startup items only

Shift Disable all external services and startup items,
and skip reopening documents.
34 Chapter 3: Working with Files

Creating and Saving Documents
To create a new text document or special-purpose window within TextWrangler, pull down
the File menu and open the New submenu. Since TextWrangler uses different kinds of
documents for specific purposes, you will see several options, as follows:

The available commands and their effects are as follows:

• Text Document: Opens an empty text document.

• (with selection): Opens a new text document containing any text selected in the
active document and having the same display font, saving you the trouble of
copying and pasting it.

• (with Clipboard): Opens a new text document and automatically pastes the
contents of the current clipboard into it.

• Text Window: Opens a new text window (see “Text Windows” later in this chapter
for more information).

• Disk Browser: Opens a new disk browser (see Chapter 9 for more information).

• FTP/SFTP Browser: Opens a new FTP/SFTP browser (see later in this chapter for
more information).

You can also create a new text document by selecting text in any application which
supports the system Services menu, and choosing the New Window with Selection
command in the Text section of the Services submenu. TextWrangler will open a new text
window containing a copy of the selected text.
Creating and Saving Documents 35

When you want to save a new text document:

1 Choose the Save or Save As command from the File menu.

TextWrangler opens a standard Save sheet:

2 Give the file a name.

3 Change the automatically-provided filename extension (if necessary).

TextWrangler will automatically provide a filename extension based on the current
document’s language type.

4 Change any desired options (see below).

5 Click Save to save the file.

You can also create a new document from the selected text in any open window with
TextWrangler’s contextual menu. Simply Control-click the selected text and choose New
(with selection) or Save Selection from the menu that appears. Depending on which
command you choose TextWrangler will either create a new editing window containing the
selected text, or display the Save dialog and allow you to create a new file containing the
selected text. The new file will use the same options (see “File Saving Options,” below) as
those of the original parent document.

Saving a Copy of a File
You can save a copy of a file with TextWrangler’s Save a Copy command in the File menu.
Just like the Save As command, the Save a Copy command displays a Save dialog and lets
you choose a name and location for the file. However, unlike the Save As command, where
TextWrangler will start working with the new file you saved in place of the original, when
you use Save a Copy, you create a new file in the designated location, but keep working
with the original file.

For example, say you are editing a document called Test.py and use the Save a Copy
command to save a document called Backup-Test.py. The next time you choose the Save
command, TextWrangler saves the changes to Test.py and not to Backup-Test.py.

File Saving Options
TextWrangler’s Save sheet is the standard Macintosh Save sheet with these additions:
36 Chapter 3: Working with Files

Save As Stationery
When this option is on, TextWrangler saves the document as a stationery pad file. When
you later open the stationery file, TextWrangler will use it as the basis of a new untitled
document. The new document will inherit the contents and display settings of the stationery
document, but TextWrangler will prompt you for a name when you save it.

Line Breaks
The Line Breaks menu let you choose what kinds of line breaks TextWrangler writes when
you save the file. Choose:

• Unix line breaks (ASCII 10) for most purposes, including use with modern Mac
applications, or for files being saved to a Unix file server. This is the default
option.

• Classic Mac line breaks (ASCII 13) if you will be using the file with other
applications which expect this format.

• Windows line breaks (ASCII 13/10) if the file resides on a Windows file server or
if you will be sending it to someone who uses a Windows- or DOS-based system.

Encoding
TextWrangler lets you save documents using any character set encoding supported by Mac
OS X, including a variety of Unicode formats (see “Saving Unicode Files” on page 48). To
select an encoding, choose its name from the Encoding pop-up menu. The list of available
encodings is controlled by your preference settings (see “Text Encodings Preferences” on
page 188).

When you select an encoding that requires a Unicode file format, you can also choose
“Unicode” as an option from the Line Breaks pop-up menu in this dialog. (Unicode has its
own line-ending standard.)

UTF-16 files created by TextWrangler are given a type of ‘utxt’—the Mac standard type
for Unicode text files. UTF-8 files are given a type of ‘TEXT’ for compatibility with other
applications; however, TextWrangler will also recognize such files with type ‘UTF8’.

Note You can choose which encodings appear in the Encoding pop-up menu in the Text Encodings
preference panel.

File State
If you modify a document’s window position or display settings and then save the
document, TextWrangler stores state information, which it will use to reopen that document
in the same manner.

TextWrangler captures only those settings which are fundamental to the document
(window position, selection range, folds, splitter setting), or any settings which vary from
the global preferences. (The latter ensures that changes to the global preferences are never
inappropriately overridden by stored display options derived from prior global or default
preference settings.)

For example, say TextWrangler is currently configured to use Courier as its default display
font, and you open (or create), save, and close a document which uses that font. If you then
change TextWrangler’s default display font to Menlo before reopening that document, the
document will display in Menlo.
Creating and Saving Documents 37

Note The above example uses the display font option for illustration, but the same principle
applies to any document display option which derives from TextWrangler’s global
preferences.

Emacs Local Variables
Emacs (the popular Unix text editor) supports a convention in which you can define
Emacs-specific settings in a block of text near the end of the file, or in the first line of the
file. This convention helps maintain consistency when sharing files among a group of
people, or across multiple systems.

For general information on Emacs variables, please see the GNU Emacs manual:

http://www.gnu.org/software/emacs/manual/html_node/emacs/
Specifying-File-Variables.html

TextWrangler will read and honor the “coding”, “tab-width”, and “x-counterpart” variables
in any file which contains an Emacs variable block, and adjusts the value of the “coding”
variable if you change the document’s encoding by using the Encoding popup.

If a file contains an Emacs variable block (or line) having a “mode” variable, TextWrangler
will attempt to match the mode name against all currently recognized languages, before
attempting to match the file name suffix or guess based on the file's contents.

You may add an Emacs variable block (or lines) to any document either directly, or by
selecting the Emacs Variable Block command from the Insert submenu of the Edit menu.

Here is an example variable block from a plain text file:

Local Variables:
coding: ISO-8859-1
tab-width: 8
End:

You may also add the TextWrangler-specific variable “make-backup-files” to control
whether or not TextWrangler should back up a given file. For more details, please see
“Controlling Backups with Emacs Variables” on page 190.

Saving with Authentication
TextWrangler supports saving files that require administrator privileges, if you possess the
necessary user and password information to enable this. For example, you can edit and save
files that are owned by, and only readable by, the “root” user. Authenticated saving is
particularly useful in conjunction with the “Show Hidden Items” option in the Open dialog,
which allows you to see and open files in hidden folders (like /bin and /usr).

When you open a file for which you do not have write privileges, TextWrangler will
display a slash through the pencil icon in the toolbar. To edit the file, click the pencil icon.
TextWrangler will prompt you to confirm whether you wish to unlock the file. (Option-
click the pencil icon to skip the confirmation dialog.)

When you are finished editing, simply choose Save from the File menu. TextWrangler will
prompt you to authenticate as a user with administrator privileges. Type a suitable user
name and password to save the file.
38 Chapter 3: Working with Files

http://www.gnu.org/software/emacs/manual/html_node/emacs/Specifying-File-Variables.html

Saving Compressed Files as bz2 or gzip
TextWrangler transparently supports opening, browsing, and saving files compressed in the
‘bz2’ and ‘gzip’ formats. To save a file with gzip compression, simply append an filename
extension of “.bz2”, “.gz”, or “.gzip” when creating it (or doing a Save As of an existing
document). (For more information on these formats, issue the commands ‘man bz2’ or
‘man gzip’ in the Terminal.)

Crash Auto-Recovery
IMPORTANT TextWrangler automatically saves auto-recovery information for all unsaved open

documents at the specified interval. When you relaunch TextWrangler after a system or
application crash, TextWrangler will reopen and restore the contents of any documents for
which recovery information is available.

TextWrangler’s auto-recovery mechanism can help minimize the chance of data loss in the
event of unexpected system or application crashes. However, it may not protect against
extraordinary events, and it will not protect against hardware failures or any other events
that render your disk unreadable. You should always manually save a document after
making any significant changes to it, and we strongly recommend that you take appropriate
measures to back up your important files and other data.

Opening Existing Documents
There are several ways to open existing documents with TextWrangler.

• Double-click any file with a TextWrangler document icon.

• If TextWrangler is running, choose the Open or Open Recent command from the
File menu.

• Select the name of a file in a TextWrangler editing window; then use the Open
Selection command in the File menu.

• Double-click a file name in a browser’s file list (see Chapter 9, “Browsers”).

• Drag a file’s icon to the Windows palette (see Chapter 6, “Working with
Windows”).

• Drag a file’s icon to the file list of any editing window (see Chapter 4, “Window
Anatomy).

• Drag a file’s icon to the TextWrangler icon or to an alias of the icon.

• Select a file in the Finder, and use the Open File in TextWrangler command in the
File section of the Services submenu.

TextWrangler can natively open files with type ‘TEXT’, ‘utxt’, and ‘UTF8’. By default,
TextWrangler will attempt to display the contents of image files via QuickTime, but will
open PDF files in a “raw” condition as if they were text documents. You can adjust how
TextWrangler should handle such files via its expert preferences. (See the “Expert
Preferences” page of TextWrangler’s built-in Help book for complete details.)
Crash Auto-Recovery 39

Choosing the Encoding for a Document
When you open a document, TextWrangler will automatically examine its contents for any
indication of the proper encoding, and attempt to handle it appropriately. If TextWrangler
cannot determine the proper encoding, and you opened the file with the Open command, it
uses the encoding specified in the Read As pop-up menu on the Open dialog. Otherwise, it
uses the encoding specified by the “If the file’s encoding can’t be guessed, use” preference
setting in the Text Encodings preference panel.

Note You can choose which encodings appear in the Read As pop-up menu by using the
Text Encodings preference panel.

Here are the details of the steps that TextWrangler goes through to determine the proper
encoding for a file:

1 If the file is well-formed HTML or XML, TextWrangler looks for an “encoding=” or
<meta charset=> directive.

2 If the file contains an Emacs variable specifying its encoding, TextWrangler will use that
encoding.

3 If you have opened the file with TextWrangler before, TextWrangler will use the file’s
stored encoding info (if any).

4 If the file contains a UTF-8 or UTF-16 (Unicode) byte-order mark (BOM), TextWrangler
opens it as that type of Unicode file.

5 If the file has a resource that contains font information (such as a ‘styl’ resource) and that
resource specifies a multi-byte font, TextWrangler opens the file as a Unicode file.

6 If you are opening the file with the Open command, TextWrangler uses the encoding
specified Read As pop-up menu on the Open dialog.

7 If the file contains no other cues to indicate its text encoding, and its contents appear to be
valid UTF-8, TextWrangler will open it as UTF-8 without recourse to the below
preferences option.

8 Finally, it uses the encoding chosen for the option “If the file’s encoding can’t be guessed,
use” from the pop-up menu in the Text Encoding preference panel.

To change the encoding for a file after opening it, use the Text Encoding popup in the
document’s status bar.

Note If an encoding change results in the conversion of a document’s contents from a
single-byte script to a multi-byte script, TextWrangler will mark the document as
being “dirty” or changed.
40 Chapter 3: Working with Files

Using the Open Command
To open a file with the Open command:

1 Choose Open from the File menu.

 TextWrangler displays the Open dialog box:

2 Select the file you want to open.

You can select (or deselect) multiple files by holding down the Command key or the
Shift key as you click the files.

3 Change any desired options (see below).

4 Click Open to open the file.

You can use the options described below when you open a file.

Enable Menu
This popup menu lets you choose what kinds of files can be selected in the Open dialog. If
you know a file contains text, but it does not appear in the Open dialog, this means the file
does not have a recognized filename extension or any other property which would allow
TextWrangler or the system to recognize that it contains text. This is sometimes the case
with files received from other computers or downloaded from the Internet. Choose
“Everything” to view all available files without restriction.
Opening Existing Documents 41

TextWrangler will first check the file’s suffix against its own language mappings (as shown
in the Languages preference panel) and if the suffix matches up with any language (even if
that language is “None”), TextWrangler will assume that file to be a text file. Thus, you can
use TextWrangler’s suffix mappings to make it to treat any file as text which the system
does not recognize. If TextWrangler cannot match a file’s suffix (or its name) to a known
language, TextWrangler will next check to see if the system recognizes that file’s content
type.

Show Hidden Items
When this option is selected, the Open dialog will display invisible files and folders. The
setting you choose will persist until you change it.

Translate Line Breaks
When this option is selected, TextWrangler translates Windows or Unix line breaks when
opening a file. Otherwise, TextWrangler leaves the original line breaks untranslated.

Unlike the other options in the Open dialog, the setting of this option is not preserved
between uses of the Open command, since in general you will only need to use this
operation temporarily, e.g. to read in a particular file.

Read As
When opening a file, you can tell TextWrangler what encoding to use by choosing it from
this pop-up menu. Usually, TextWrangler will correctly auto-detect the encoding, but if it
does not, you can try applying the Reopen Encoding command with an appropriate
encoding. Chapter 5 includes more information on encodings.

Open In
When opening one or more files, you can use the options on this pop-up menu to override
your default document opening preferences. These options have the following effect:

• (default): TextWrangler will open the selected documents according to your
preference settings.

• Front Window: TextWrangler will open all of the selected documents into the
frontmost text window. If there are no text windows open, or the frontmost text
window contains an active sheet, this option will be disabled.

• New Window: TextWrangler will open all of the selected documents into a new
text window.

• Separate Windows: TextWrangler will open each of the selected documents into its
own text window.

Reload from Disk
When you choose this command, TextWrangler will compare the contents of the current
document in memory to those of its file on disk, and reload the document from its file if
they differ. This is useful in situations where the file may have changed without
TextWrangler noticing, which can happen if, e.g. the “Automatically refresh documents”
option in the Application prefs panel is turned off, or if the file is on a shared disk and has
been modified from another workstation.
42 Chapter 3: Working with Files

Opening and Viewing Files within Zip
Archives
TextWrangler can transparently open and display the contents of most Zip-compressed
archives (“.zip”) either directly or during a multi-file search. (Zip archives must be in the
format created by the Finder’s “Compress” command, or by applying `ditto -k` from the
command line.)

Note If the Zip archive contains only one top-level item, and that item is a folder,
TextWrangler will “hoist” the rest of that package’s contents and not display the top-
level item.

Opening bz2, gzip, and tar Files and Binary
plists
TextWrangler transparently opens and displays the contents of any bz2 or gzip-compressed
files (“.bz2”, “.gz” and “.gzip” files), as well as tarballs (“.tar” files) and binary plists
(“.plist” files), both directly and during multi-file search.

 This is especially useful for viewing and working with system log files and similar
automatically-generated files, as well as system and application preference files.

If you make any changes to such a file and save it, TextWrangler will automatically re-
compress or re-convert the file on save.

Opening Hidden Files
Turn on the “Show Hidden Items” option in the Open dialog to display hidden files
(including both files whose invisible attribute has been set, and those whose names begin
with a period) or files from a folder which is normally hidden by the system.

Using the Open from FTP/SFTP Server
Command
See “Accessing FTP/SFTP Servers” on page 49.

Using the Open Selection Command
The Open Selection command lets you quickly invoke the Open File by Name command to
search for any file that is referenced in the text of a document. It is particularly useful for
opening include files or any document referenced by another file.

To open a file whose name is referenced in the text of a document:

1 Select the file name within the body of the document.

2 Choose Open Selection from the File menu.

If a suffix of the form “.x” follows the name, TextWrangler will automatically expand
the selection to include the suffix.

TextWrangler will display the Open File by Name window, prepopulated with the
selected text.

3 Click Open or type Return in the Open File by Name window.
Opening Existing Documents 43

TextWrangler also understands the Unix-style line number and character offset
specifications “:line:offset” that can be appended to a file name, and will honor them when
opening a file. If the specified file is already open, this command will simply select the
designated location within the file. (These specifications are frequently generated by Unix
command line tools.)

For example, selecting the text “main.cp:210” and choosing Open Selection will bring up
the Open File by Name window prefilled with that search string, and when you click Open,
TextWrangler will then open the file “main.cp” and automatically select line 210. Likewise
if you apply Open Selection to the text “foo.cp:398:43” and invoke Open File by Name,
TextWrangler will open the file “foo.cp” and automatically position the insertion point at
the specified location.

In searching for the requested file, TextWrangler will look in the following locations (in
order of preference):

• If there is a disk browser open, TextWrangler will search within its current root
directory.

• Otherwise, TextWrangler will look first in the same folder as the file containing
the selected file name, and then in any subfolders within that folder.

• If TextWrangler cannot find the file in any of these places, it will display a Choose
Folder dialog to allow you to locate the file manually.

In some cases, there may be more than one file with the same name in the various folders
TextWrangler looks in. Normally, TextWrangler opens the first such file it encounters, and
then stops.

Using the Open File by Name Commands
If there is no selection, or there is no text display view in the front window, Open Selection
becomes Open File by Name. Choosing this command brings up the Open File by Name
window.)
44 Chapter 3: Working with Files

Activating the Open File by Name window, or choosing the menu command, will place
keyboard focus in the search box and select its contents, so that you can just start typing.
(To clear an existing entry, click the “clear” widget at the right-hand edge of the field.)

As you type, TextWrangler will search for files matching the current string as well as
wildcard matches, and present a list of possible matches in the bottom panel of the window.
If the string you enter contains wildcard characters (see below) then TextWrangler will
treat it as a wildcard pattern. If the string you enter does not contain wildcards,
TextWrangler will instead use it as a basis for casting a wide net.

TextWrangler will look for matches in the following locations (in order of preference):

• If there is a disk browser open, TextWrangler will search within its current root
directory.

• Otherwise, TextWrangler will look first in the same folder as the file containing
the selected file name, and then in any subfolders within that folder.

• If TextWrangler cannot find the file in any of these places, it will display a Choose
Folder dialog to allow you to locate the file manually.

You can navigate the list of potential matches by using the up and down arrow keys or the
mouse pointer, and open any listed file by selecting it and typing Return or Enter, or
clicking the Open button.

If TextWrangler does not locate any potential matches, you can still search for the file, as
before. (The search will skip locations where such a file would have already been found,
i.e. the current file’s parent directory.)

If you type a string which appears to be an absolute or a home-relative path (e.g. “/path/to/
some/file.txt” or “~/Documents/some/file.txt”, TextWrangler will cease searching and
when you type Return or Enter, or click the “Open” button, TextWrangler will attempt to
open the file at that path, if it exists.

If you type a string which appears to be a URL, TextWrangler will attempt to open it
directly, or hand it off to an application that can. (TextWrangler supports a number of
schemes, including ‘file’, ‘http’, ‘ftp’, and ‘sftp’.)

TextWrangler also maintains a search history in the Open File by Name window: when you
open a matched item, TextWrangler will store the string you used, and the search history
(magnifying glass) popup lists these recently used strings.

You may use the following wildcards as part of a search string:

Wildcard Meaning

? Any single character

* Any number of characters

Any numeric character

\ Escapes one of the above; for example, \? enters a
question mark. To enter a literal backslash, use \\.
Opening Existing Documents 45

Using the Open Counterpart Command
You can use this command or its default key equivalent of Command-Option-uparrow
(configurable via the Menus & Shortcuts preference panel) to switch between counterpart
files (from source to header and vice versa). In addition to intrinsic counterparts (e.g. C/
C++ style header/source mapping), you can explicitly define counterparts for a language
via the Suffix Mappings section of the Languages preference panel.

You can also override TextWrangler’s default rules for switching between counterpart files
by setting a value for the (TextWrangler-specific) “x-counterpart” variable in a file’s Emacs
variables. For example, if your file contains the following as part of its variable block:

-*- x-counterpart: ExampleStrings.R; -*-

when you type Command-Option-uparrow, TextWrangler will look for the file
“ExampleStrings.R”.

Using the Open Recent Command
The Open Recent submenu contains a list of files you have opened recently. To open one of
these files, choose it from the Open Recent submenu. To set the number of items displayed
in the Open Recent list, use the “Remember the [] most recently used items” option on the
Application preference panel.

Using the Reopen using Encoding Command
The Reopen using Encoding submenu contains a list of all available text encodings. To
reopen the current text document and have its contents interpreted using a different
encoding, choose the desired encoding from the Reopen using Encoding submenu. This
command will only be available if the current document is unmodified.

Quitting TextWrangler
By default, whenever you quit TextWrangler or TextWrangler automatically quits because
of a system shutdown, restart, or user account logout, TextWrangler will attempt to restore
as much of its state as possible when starting back up. Thus, you may not be prompted to
save new or unsaved documents, since TextWrangler will automatically preserve the
contents of all open documents before it exits.

You can control whether TextWrangler should preserve and restore unsaved changes via
the “Restore unsaved changes” option in the Application preference panel existing
documents. If this option is on, TextWrangler will automatically preserve unsaved changes.
If this option is off, TextWrangler will instead prompt you to save each document which
has unsaved changes.
46 Chapter 3: Working with Files

An International Text Primer
Mac OS X includes extensive support for working with international text, including
Unicode. If you have enabled additional text input methods in the International section of
the System Preferences, you will see the Input menu on the right-hand side of the menu bar.
This menu allows you to change keyboard layouts or script systems as you work.

Note Actually, even if you have never used a non-Roman script system before, you may still
have used this menu, if you have ever chosen an alternate keyboard layout such as
Dvorak, or a keyboard layout for a Roman language such as French. However, since
the Roman script is suitable for several languages, choosing one of these keyboard
layouts still leaves you in the Roman script.

International Text in TextWrangler
As a text editor, TextWrangler supports only one font per document window, though it can
display all available characters in the active font, including Unicode characters.

TextWrangler supports editing in almost any language which uses left-to-right text input
methods. To start entering text in any supported language, choose a suitable input method
from the Input menu. The icon for that method will appear in the menu bar in place of
either the American flag (for the U.S. English layout) or the icon for your usual Roman
keyboard layout.

If you have turned off the “Try to match keyboard with text” option in the Options dialog of
the International section of the System Preferences), you may also need to select a suitable
display font via the Font panel. (We recommend leaving this option on, so that
TextWrangler can automatically switch to the correct input method when you change
document windows.)

You can use international text throughout TextWrangler—for example, in the Find window,
in the HTML Tools, and everywhere else you would use Roman text. Likewise,
TextWrangler will provide the necessary style information so that if you copy and paste, or
drag and drop, international text into another application, that application will have enough
information to handle the text correctly (assuming it is capable of doing so).

TextWrangler remembers the encoding used in a document when you save it, so the next
time you open it, you will not need to choose the font. However, you may not be able to
read files which do not have this stored information, for instance, files downloaded from
the Internet, until you choose an appropriate encoding for them.

When performing a search, TextWrangler respects any available information about each
file’s encoding. If a file does not contain any information about its encoding, TextWrangler
will use the default encoding set in the Text Encodings Preferences panel.

Unicode
Unicode is an international standard for character encoding, which includes an extensive
selection of characters from Roman, Cyrillic, Asian, Middle Eastern, and various other
scripts. For more background information or complete details on Unicode, the Unicode
Consortium web site is the best place to look.

http://www.unicode.org/
An International Text Primer 47

TextWrangler fully supports and makes extensive use of Unicode, in addition to all other
OS-supported text encodings. In particular, TextWrangler internally represents all
documents as Unicode, regardless of their on-disk encoding.

Saving Unicode Files
TextWrangler lets you save documents that use character set encodings other than Mac
Roman, even multi-byte character sets. When saving a file, you can choose to save text
composed in any script with any encoding. In addition to the standard character set
encodings, TextWrangler also lets you save the files in a variety of plain Unicode files:

• Unicode (UTF-8): UTF-8 without a byte-order mark

• Unicode (UTF-8, with BOM): UTF-8 with a byte-order mark (BOM)

• UTF-16 Little-Endian

• UTF-16 Little-Endian, no BOM

• UTF-16

• UTF-16, no BOM

IMPORTANT The naming convention TextWrangler follows for UTF-8 documents has changed from that
used by versions before 3.5: the encoding name “Unicode (UTF-8)” now refers to files
without a byte-order mark (BOM), while the specific name “Unicode (UTF-8, with
BOM)” refers to files which have a BOM.

Here are details about what each of the above options means:

• UTF-8: UTF-8 encoding is a more compact variant of Unicode that uses 8-bit
tokens where possible to encode frequently used sequences from the file. (This
format makes it easier to view and edit content in non-Unicode-aware editors.)

• UTF-16: UTF-16 encoding always uses 16-bit tokens.

• BOM: When saving Unicode files, you may include a byte-order mark (BOM) so
that the reading application knows what byte order the file’s data is in. However,
since many applications do not correctly handle files which contain BOMs, you
may wish to use an encoding variant without a BOM for maximum compatibility.
(For purposes of recognition when you use this option, the UTF-16 BOM is FEFF,
and the UTF-8 BOM is EFBBBF.)

• Little-Endian: Since UTF-16 uses two bytes to represent each character, this leaves
the question of which of the two bytes comes first—whether it is “little-endian” or
“big-endian.” By default, TextWrangler writes UTF-16 big-endian (the standard).
By choosing one of the “Little-Endian” (or “byte-swapped”) encodings, you can
write little-endian files instead, which some Windows software requires.

Files saved as Unicode from TextWrangler are given a type of ‘utxt’—the standard for
Unicode text files on the Mac. UTF-8 files are given a type of ‘TEXT’ for compatibility
with other applications; however, TextWrangler will also recognize such files with type
‘UTF8’.
48 Chapter 3: Working with Files

Opening Unicode Files
When opening files, TextWrangler will ordinarily determine the format of a file based on
its file type and content, and automatically process Macintosh text, Unicode, and UTF-8.
However, some files are structured such that TextWrangler is unable to correctly determine
their format based on their type or contents. The cases that we know of are:

• UTF-8 files whose type is ‘TEXT’ but which lack a byte-order mark and do not
contain any encoding specification or any extended characters. (If a UTF-8 file is
of type ‘TEXT’ but has a byte-order mark, it will be correctly interpreted as UTF-
8.)

• Byte-swapped Unicode files which were written without a byte-order mark
(usually by broken Windows software);

• Unicode files whose type is ‘TEXT’ (instead of the Macintosh standard ‘utxt’) and
which lack a byte-order mark. (If a UTF-16 file lacks a BOM but is of type ‘utxt’,
TextWrangler will treat it as big-endian Unicode.)

If you know that a file you are trying to open is in Unicode but it displays as gibberish on
your screen, close its window without saving. Then try reopening the file, using the Open
As pop-up menu in the Open dialog to specify whether to treat the file as Unicode, byte-
swapped (little-endian) Unicode, or UTF-8.

If you attempt to open a document which cannot be represented by either its declared
encoding or any recognizable encoding, TextWrangler will present an alert to warn you.
Also, if TextWrangler encounters such a file during a multi-file search, it will log a
warning.

Accessing FTP/SFTP Servers
TextWrangler can open files directly from, and save them to, any available FTP server. It
can also open and save files directly via SFTP (SSH File Transfer Protocol). In order to
access a server via SFTP, that server must be running a compatible version of sshd. (A great
many machines, including Mac OS X systems for which “Remote Login” is turned on in
the Sharing panel of System Preferences, satisfy these criteria.)

Aside from choosing the SFTP checkbox in the Open from…/Save to… dialogs, or the
FTP/SFTP Browser, opening and saving files via SFTP works just like it does when using
ordinary FTP. A file opened via SFTP will appear in the Open Recent submenu with an
“sftp:” URL, and you can send a “get URL” event to TextWrangler with an “sftp” URL as
well.

Opening Files from FTP/SFTP Servers
To directly open files from an FTP or SFTP server, choose Open from FTP/SFTP Server
from the File menu. TextWrangler will open an new FTP/SFTP Browser window. Like
other browser windows, FTP/SFTP browsers will remain open until you close them, and
once connected, they will maintain a persistent connection to the server for as long as they
remain open
Accessing FTP/SFTP Servers 49

Enter the server’s name in the “Server:” field, or choose a local server advertised by
Bonjour by clicking the popup menu to the right of the “Server:” field, specify your user
name and password in the appropriate fields and choose the “SFTP” option if appropriate;
then click the Connect button or press the Return or Enter keys to connect to the server.

Alternatively, you can choose a bookmark from the Bookmarks pop-up menu to fill in
stored info for the server, user name, password, and connection options. You can create
bookmarks by entering the appropriate information in the Open from… or Save to…
dialogs and choosing Add from the Bookmarks pop-up menu, or via the Bookmarks list in
the Bookmarks panel of the Setup window. You can modify or delete existing bookmarks
via the Bookmarks panel of the Setup window.
50 Chapter 3: Working with Files

Once you have connected to the server, you can open files by double-clicking them, or
selecting them and clicking the Open button. You can double-click a folder to change
directories. If you hold down the Option key when opening a folder, it will open in a new
FTP/SFTP Browser window. You can select a range of files and directories by Shift-
clicking, and you can select (and deselect) multiple items one at a time by Command-
clicking them.

To refresh the directory listing, click the button with the circular arrow icon (located above
the upper left corner of the listing). The checkbox below the listing labeled Show Files
Starting with “.” tells TextWrangler whether to display hidden or admin files in the chosen
directory, such as .login, .forward, and .signature. (Starting a file name with a period is a
convention used by Mac OS X and other Unix systems to make that file invisible in most
directory listings.)

Once you have selected a file and opened it, TextWrangler displays the file in a text editing
window. The toolbar displays the URL of the file on the server, not the pathname of the file
on your hard drive as it does for local files.

NEW You can drag items from FTP browser windows to other applications. TextWrangler will
include a URL in the drag event for each selected item in a form that applications which
accept URLs may be able to use.

You can use the Info button to examine the size, modification date, and if applicable, file
system permissions of the selected file. You can edit the file’s name and click the Rename
button to rename the file on the server; you can also make changes to the permissions and
click the Set button to change them. (Take care not to set the permissions such that the file
becomes inaccessible to you!)
Accessing FTP/SFTP Servers 51

You can directly create a new file (or folder) on the server by clicking the New button, or
remove files from the server by selecting them and pressing the Delete button.

Specifying Alternate Ports
TextWrangler allows you to open an FTP or SFTP connection on ports other than the
default. To specify an alternate port, place it at the end of the server name, separated by a
colon—for example, ftp.example.com:1111.

Storing Passwords
As long as your user account’s keychain is unlocked, TextWrangler will use it to store the
password for each server that you access, and to automatically fill in the corresponding
password whenever you enter a server and user name pair for which there is a keychain
entry. If your keychain is locked, you will need to retype your password every time you use
the FTP browser.

Using SSH Key Files
In order to connect to an SFTP server which requires SSH keys (or certificates) rather than
passwords, you must first create an appropriate entry for that server in your local account’s
.ssh/config. You may then type the server name, or shortcut name, into the Server field of
the FTP/SFTP Browser and connect without entering a password.

Transfer Formats
When you open a file from an FTP or SFTP server, TextWrangler downloads the file “raw”
(in binary mode) and then performs a standard line ending conversion upon opening the
(local temp) file.

Saving Files to FTP/SFTP Servers
After you have edited a file opened from an FTP or SFTP server, pressing Command-S or
choosing Save from the File menu saves the new version back to the server. If you want to
save the file in a different directory or under another name, choose Save to FTP/SFTP
Server to open the Save to FTP/SFTP Server dialog (shown below).
52 Chapter 3: Working with Files

This dialog works much like the standard Save dialog for saving a local file, with the
addition of fields and controls similar to those in the FTP/SFTP browser allowing you to
select or specify connection info, and to navigate and obtain info about other files.

Note When you save a file to an FTP or SFTP server using either Save or Save to FTP/SFTP
Server, and the file has Unix (LF) or Windows (CR+LF) line endings, TextWrangler
uploads the file in binary mode, preserving its line endings exactly as they are on your
local machine. However, if the file has Macintosh (CR) line endings, it is uploaded in
text mode so that the server can convert the line endings as appropriate.

Finally, you can use Save a Copy to FTP/SFTP Server to upload a copy of your current file
to an FTP server while keeping your local file open. This is especially useful when you
maintain web site content on your local hard drive and only need to upload changes made
in one or two files to the server.
Accessing FTP/SFTP Servers 53

Using TextWrangler from the
Command Line
You can use the “edit” command line tool to open files into TextWrangler via the Unix
command line. The first time you run TextWrangler after installation, it will offer to install
the command line tools for you. If you choose not to do so, you can choose “Install
Command Line Tools” from the TextWrangler (application) menu at any time to install (or
re-install) the current version of the command line tools.

To open a file in TextWrangler from the command line, type

edit filename

where filename is the name of the file to be opened. To launch TextWrangler without
opening a file (or activate it, if it is already running), type

edit -l

In addition to files, you can also specify FTP or SFTP URLs to files or directories, to have
TextWrangler open the specified files, or an FTP/SFTP Browser for each directory. You
will be prompted to enter passwords if necessary.

You can also pipe STDIN to the “edit” tool, and it will open in a new untitled window in
TextWrangler: for example,

ls -la | edit

If you just type

edit

with no parameters, the tool will accept STDIN from the terminal; type Control-D (end-of-
file) to terminate and send it to TextWrangler.

The complete command line syntax for the “edit” tool is

edit [-bcChlpsuvVw --(long_form_switches)]
 [-e <encoding_name>] [-t <string>] [+<n>]
 [file (or) <S/FTP URL> ...]

See the “edit” tool’s man page (‘man edit’) for a complete description of the available
switches and options.

Using Stationery
Like most Macintosh applications, TextWrangler supports stationery pads. A stationery pad
is a template file that, when opened, results in a new, untitled document with the content
from the original stationery file. In other words, you do not edit the stationery file itself;
you use it as a starting point for a new document.

To create a stationery pad, click the Save As Stationery checkbox when saving the file from
TextWrangler. Alternatively, you can change any document into a stationery pad in the
Finder by clicking the Stationery Pad checkbox in the document’s Get Info window.
54 Chapter 3: Working with Files

You can create new documents from a stationery pad in any of these ways:

• Open the pad the same way you would open any other document.

• Choose New With Stationery from the File menu, and select the desired stationery
pad from the contents of the Stationery folder (inside TextWrangler’s application
support folder).

• Use TextWrangler’s Stationery List, which is available from the Window menu.
The Stationery List is a palette that displays all the stationery pads you have placed
inside the Stationery folder of TextWrangler’s application support folder. You can
create a new document from any of these pads by double-clicking them in this list.

To assign a keyboard shortcut to a stationery pad, select the pad in the Stationery List
window; then, click the Set Key button, type the desired key in the Set Key dialog and click
OK.

Manually Sorting the Stationery
By default, items in the Stationery List are displayed in alphabetical order. However, you
can force them to appear in any desired order by including any two characters followed by
a right parenthesis at the beginning of their names. For example, “00)Web template” would
sort before “01)HTML Template”. For such files, the first three characters are not displayed
in TextWrangler. You can also insert a divider by including an empty folder whose name
ends with the string “-***”. (The folder can be named anything, so it sorts where you want
it.) These naming conventions are the same as those used by the utilities FinderPop and
OtherMenu.

Hex Dump for Files and Documents
Choose the Hex Dump File command to generate a hex dump representation from a file
that you choose. Choose Hex Dump Front Document to generate a hex dump
representation of the frontmost document as it exists in memory.

You should bear in mind that the result of performing the Hex Dump command against a
disk file may differ from the result obtained by using it against an open document, since
when a document is open in memory, even without any explicit edits being made, line-
break translation and possibly character set encoding conversions have taken place.

Making Backups
TextWrangler can automatically make a backup copy of each document you edit before
saving it. To enable this feature, turn on the “Make backup before saving” option in the
Text Files preference panel. For complete details on how this feature works, and optional
behaviors, please see “Make backup before saving” on page 189.
Hex Dump for Files and Documents 55

Printing
To print a document, choose the Print command from the File menu. TextWrangler will
display a standard print sheet in that document’s window.

To print one copy of the active document without displaying the print sheet, hold down the
Shift key and choose the Print One Copy command from the File menu.

To print only the selected range of text within the active document, choose the Print
Selection command from the File menu.

Text Printing Options
You can access TextWrangler’s application-specific printing options for the current
document by choosing the Text Printing command in the Edit menu. When you choose this
command, TextWrangler will open the printing options sheet.

Note You can set defaults for these options, as well as the printing font, in the Printing panel of
TextWrangler’s Preferences window.

Page Options:
These options control how the printed pages will be laid out.

Frame printing area
When this option is selected, TextWrangler draws a frame around the printed text.

Print line numbers
When this option is selected, TextWrangler prints line numbers along the left edge of the
paper.
56 Chapter 3: Working with Files

1-Inch gutter
When this option is selected, TextWrangler leaves a one-inch margin along the left edge of
the paper. Use this option if you usually put your pages in three-ring binders.

Print color syntax
When this option is selected, TextWrangler will print the document in color.

Page Headers:
These options control what information is included in the page headers.

Print page headers
When this option is selected, TextWrangler prints the page number, the name of the file,
and the time and date printed in a header at the top of each page.

Print full pathname
When this option is selected, TextWrangler prints the full pathname of the file in the
header.

Time Stamp
The Time Stamp option lets you choose whether the date that appears in the header is the
date that the file was last modified or the date that the file was printed.
Printing 57

58 Chapter 3: Working with Files

C H A P T E R

4
Editing Text with
TextWrangler
This chapter describes the basics of editing text with TextWrangler, wrapping
text, text manipulations, and file comparison.

In this chapter
Basic Editing . 60

Moving Text – 60 • Multiple Clipboards – 61
Drag and Drop – 62

Multiple Undo . 62
Window Anatomy . 63

The Toolbar – 63 • The Split Bar – 64 • The Navigation Bar – 65
The File List – 68 • The Status Bar – 70
The Gutter and Folded Text Regions – 71

The View Menu . 73
Text Display – 73

Cursor Movement and Text Selection . 76
Clicking and Dragging – 76 • Arrow Keys – 77
CamelCase Navigation – 77 • Rectangular Selections – 77
Working with Rectangular Selections – 78
Scrolling the View – 80 • The Delete Key – 81
The Numeric Keypad – 81 • Go To Line Command – 82
Function Keys – 82 • Resolving URLs – 82

Text Options . 83
Editing Options – 83

Text Options . 83
Editing Options – 83 • Display Options – 84

How TextWrangler Wraps Text . 86
Soft Wrapping – 86
Hard Wrapping – 87

The Insert Submenu . 90
Inserting File Contents – 90 • Inserting File & Folder Paths – 90
Inserting a Folder Listing – 90 • Inserting a Page Break – 91
Comparing Text Files – 91

Comparing Text Files . 91
Compare Against Disk File – 93
Multi-File Compare Options – 94

Using Markers . 95
Setting Markers – 95 • Clearing Markers – 95
Using Grep to Set Markers – 96

Spell Checking Documents . 96
Check Spelling As You Type – 96 • Manual Spell Checking – 97
The Spelling Panel – 97
59

Basic Editing
TextWrangler behaves like most Macintosh word processors and text editors. Characters
that you type in an active window appear at the insertion point, a vertical blinking bar. You
can click and drag the mouse to select several characters or words, and the selected text is
highlighted using the system highlight color, which you can set in the Appearance panel of
the System Preferences.

If you select some text and then type, whatever you type replaces the selected text.

To delete selected text, press the Delete key or choose Clear from the Edit menu. If you
have a keyboard with a numeric keypad on it, you can press the Clear key on the keypad to
delete the selected text.

In addition to clicking and dragging to select text, you can use the selection commands in
the Edit menu.

You can then cut, copy, or perform any other action that affects the selected text.

Note TextWrangler defines a paragraph as a block of text surrounded by blank lines (lines
containing no characters other than tabs or spaces). The beginning and end of the
document also mark the beginning and end of paragraphs.

Moving Text
To move text from one place to another, follow these steps:

1 Select the text you want to move.

2 Choose Cut from the Edit menu.

TextWrangler removes the text from the window and stores it on the clipboard.

To select… Choose this from the Edit menu…

All text Select All

No text (deselect) (click anywhere in the document, or
type any arrow key)

Line containing
insertion point

Select Line

Paragraph containing
insertion point

Select Paragraph
60 Chapter 4: Editing Text with TextWrangler

3 Use the scroll bars to move to the new place for the text if necessary; then click to set the
insertion point where the text is to be inserted.

4 Choose Paste from the Edit menu.

You can paste the contents of the clipboard as many times as you want in any
TextWrangler window or in any other application.

Pasting inserts the text stored on the clipboard at the insertion point. If there is a selection,
pasting replaces the selection with the contents of the clipboard.

To place text on the clipboard without deleting it, choose Copy from the Edit menu.

Tip To add selected text to the existing contents of the clipboard, hold down the Shift key
as you choose the Cut or Copy command. When you hold down the Shift key,
TextWrangler changes these commands to Cut & Append and Copy & Append.

Multiple Clipboards
TextWrangler supports six separate clipboards. Each time you use the Cut or Copy
command, TextWrangler automatically switches to the next clipboard (wrapping back
around to the first clipboard after the sixth). This way, the last six things you copied or cut
are always available for pasting—sort of a “clipboard history.”

By default, the Paste command pastes text from the most recently used clipboard, so if you
do nothing special, TextWrangler works just like any other Macintosh program. However,
by using the Previous Clipboard command in the Edit menu you can access the previous
clipboard contents. Next Clipboard moves forward through the clipboard history. There are
also buttons in the Clipboard window (below) that let you move back and forth through the
clipboards.

Once you have selected a clipboard using one of these methods, the next Cut, Copy, or
Paste command will use the clipboard you chose. (Subsequent Cut or Copy commands will
advance to the next clipboard; Paste never advances automatically.)

Holding down the Shift key changes the Paste command to Paste Previous Clipboard, or
you can use the key equivalent Command-Shift-V. This command replaces the pasted text
with the contents of the previous clipboard. The previous clipboard becomes current and
will be used for any further paste operations; repeated applications of the command cycle
backward through the available clipboards.

Note For compatibility with international text content, the Clipboard window displays text in
the font (and font size) that it was put on the clipboard with. Changing the display
font in the Clipboard window does not affect the underlying data.
Basic Editing 61

Drag and Drop
Another way to move text from one place to another is by “drag and drop.” If you drag and
drop text from one window to another, TextWrangler copies the text to the target window
without removing it from the original window.

In addition, you can drag and drop an item from the Finder onto an editing window in
TextWrangler. If the item is a text file, the file’s contents are inserted. If the item is a folder,
a listing of the item’s contents is inserted. If you hold down the Command key while
dragging a folder, the path of the item is inserted instead.

Multiple Undo
TextWrangler provides the ability to undo multiple edits, one action at a time. The number
of edits that may be undone is limited only by available memory. The practical limitation is
determined by the extent of the edits and the amount of free memory.

TextWrangler also supports multiple Redos. If you have not made any changes after
performing an Undo, you can redo each action, in order, by choosing that Redo command
from the Edit menu or typing Command-Shift-Z. However, once you perform a new action,
you cannot redo any actions that you undid before you made that change.

There is also a Clear Undo History menu command (Command-Control-Z), which will
clear the undo history for the current editing window. This command can be useful if you
have performed many operations on a file and wish to recover memory stored by Undo
state information (in the rare event that should become necessary). You can also script this
operation via the "clear undo history" scripting command (see the scripting dictionary for
details).
62 Chapter 4: Editing Text with TextWrangler

Window Anatomy
TextWrangler text windows have the same controls you are familiar with from other
Macintosh applications (for example, text windows are resizable and zoomable, and have
both vertical and horizontal scroll bars). Some additional elements which may be less
familiar are the toolbar, the split bar, the navigation bar, and the file list.

Under Mac OS X 10.7 (Lion), you can expand the current editing window into full screen
mode by clicking the control in the top-right corner of the window (circled above).

IMPORTANT You can choose whether TextWrangler should display all new and opened documents in the
frontmost window, or open each document into a new text window, by setting the “Open
documents into the front window when possible” option in the Application preference
panel (see page 178).

The Toolbar
The toolbar is a section at the top of each editing window containing buttons and controls
that let you adjust display options for and provide info about the current document. You can
toggle display of the toolbar by choosing Hide Toolbar/Show Toolbar in the View menu, or
(under Mac OS X 10.6 only) by clicking the control in the top-right corner of the window.

You can also change the Toolbar options in the Appearance preference panel to make
TextWrangler hide or show individual items on the toolbar by default.

If the current document has a corresponding disk file, the toolbar displays the full path to
the document’s disk file and the last time the file was saved. If the document has not been
saved to disk, the toolbar displays “(New Document)” instead of a file name.

Note Windows in which the toolbar is not directly below the window title bar (for example,
disk browsers and search results) do not have a toolbar control, but do honor the
global toolbar preference. You can also use the Text Options sheet to show and hide
the toolbar on a per-window basis.

The icons on the toolbar are indicators, buttons, and popup menus that give you quick
access to commonly used functions. The following table explains each icon.
Window Anatomy 63

Key Equivalents for Toolbar Menu Items
You can assign keyboard shortcuts to items on the Text Options popup menu from the
Toolbar entry in the Menus & Shortcuts preference panel.

The Split Bar
Every text window and every browser text pane has a split bar, a small black bar above the
scroll bar, that lets you split it into two active view regions. Splitting a text pane lets you
view and edit a document’s content in two places at the same time. Each region is
independently scrollable.

Note Scrolling the non-active split region does not automatically change view focus.

To split the text pane, simply drag the split bar down and let go.

Icon Meaning

A solid diamond indicates that the document has been
modified. A hollow diamond means only the state of the
document (window position, selection range, scrolling
position, and so on) has changed.

 The pencil icon indicates that the document can be
modified. If the pencil has a slash across it, the document
cannot be modified because the file is read-only, the disk is
locked, or the file is part of a source-control project which
has made it read-only. If the file is not on a locked disk, you
can click the pencil icon to toggle the document’s editability.

 The Text Options popup menu contains commands such as
Soft Wrap Text, Show Page Guide, and Show Invisibles that
let you control how text is displayed in the window.

 The document proxy icon represents the current document.
Clicking this icon is the same as choosing Reveal in Finder
from the View menu: it opens a Finder window that contains
the document. You can also drag the document proxy icon
to any other application, or you can drag it to the Trash
(which is the same as choosing Close & Delete from the File
menu).
64 Chapter 4: Editing Text with TextWrangler

To collapse the text pane back down to a single region, drag the split bar (starting from
anywhere along its length, not just at its right end) back up to its original position.

Tip Double-clicking the split bar unsplits a split text pane or restores the last-used split
position. If the text pane has never been split, it will be split 50-50. To force a 50-50
split for a previously split text pane, Option-double-click the split bar when it is in its
original position.

The Navigation Bar
The navigation bar is a panel at the top of a text window which provides controls for
selecting the active document and for moving to specific points with the current document.
To hide the navigation bar, choose Hide Navigation Bar in the View menu, or turn off the
Navigation Bar options in the Appearance preference panel.

You can also use the options in the Appearance preference panel to hide or show individual
items on the navigation bar.

Choosing the Active Document
Click on any document in the file list to make that document active, click the Previous or
Next buttons to move to the previous or next document in the window, or choose Previous
Document/Next Document from the View menu. You can also choose a specific document
from the adjacent popup menu to make it active.

The Previous and Next buttons in the Navigation bar, as well as the Previous Document/
Next Document commands, select documents in most-recently used order, rather than
alphabetical order.
Window Anatomy 65

Function Navigation
The Function popup menu lists the functions defined in a programming language source
file or various specific tags present within an HTML document. If the current document’s
language does not support function scanning, the function popup will not be displayed in
the navigation bar.

The following indicators appear in the function popup to show the type of function.

Manually Defined Functions
For code written in several languages, including C/C++, PHP, Python, and Ruby, you can
manually add customized entries to the function popup menu by inserting suitable “mark”
directives within a document.

In C/C++ documents, TextWrangler recognizes “#pragma mark” directives. For other
languages, each directive consists of a line comment followed by a space and the string
“#mark ”, plus the desired marker string.

For example, to add an function popup entry named “My item”:

In C/C++:

#pragma mark My item

In JavaScript:

// #mark My item

In HTML:

<!-- #mark My item -->

Indicator Meaning

• The function containing the insertion
point

† C/C++ typedef

◊ C/C++ “#pragma mark” directive

italic name C/C++ function prototype

1-6 Heading level (in HTML files)

tag name Tag name for the indicated name or ID
attribute value (in HTML files)
66 Chapter 4: Editing Text with TextWrangler

Note In Python files, each directive must be separated from the preceding content by at
least one empty line.

Navigation with Markers
A marker is a selection range that you can name. If a document contains any markers, you
can select them from the Marker popup menu to move quickly to the specified section of
the file.

For more information on working with markers, please see “Using Markers” on page 95.

Note If you are programming, you may be tempted to use markers to mark functions in
your source code. However, if TextWrangler supports the language you are using, this
is usually unnecessary; your functions will automatically appear in the Function popup
menu.

Opening Counterparts
You can press the Counterpart button next to the Marker popup to quickly open and/or
switch back and forth between a file and its counterpart (source file to header, or vice
versa). This button has the same effect as Open Counterpart in the File menu (see page 46).
Window Anatomy 67

Opening Included Files
You can use the Included Files popup to list or open any included files which the current
document references.

Key Equivalents for Navigation Bar Menu Items
You can assign key equivalents to the controls on the navigation bar from the Navigation
Bar entry in the Menus & Shortcuts preference panel. So, for example, you can assign a key
equivalent to Open Function Menu, then press that key combination and use the arrow keys
to navigate the current document's function list directly from the keyboard.

The File List
If TextWrangler is configured to open documents into the front window, it will display a
file list down the left-hand side of each editing window which shows all the documents
currently open in that window. To hide (or show) the file list, choose the Show Files (or
Hide Files) command in the View menu, or type its default key equivalent of Command-0.
Click any document’s name in the list to make that document frontmost in the text window.

Dragging a document’s name from the file list has the same effect as dragging its proxy
icon in the toolbar. You can also drag documents within the list to manually reorder them
68 Chapter 4: Editing Text with TextWrangler

There are several buttons and popup menus below the file list, which you can apply to
perform various additional actions.

To open an existing file into the current text window, choose Open from the File menu, or
drag and drop the file from the Finder into the window’s file list.

To create a new document, click the Add (plus) button or choose New Text Document in
the New submenu of the File menu.

To move a document from the current text window into its own text window, select it in the
list and choose Move to New Window from the Action (gear) popup menu, or Control-click
on the document in the list and choose this command from the contextual menu. To move
multiple documents, select them and choose Move to New Window to create a new text
window containing all the selected documents.

To close a document, you can choose Close Document from the File menu, click on the
close box next to its name in the list, select it in the list and apply the Close command from
the action (gear) menu, or Control-click on it in the list and select Close in the contextual
menu. You can also choose the Close Others command from the action menu or in the
contextual menu to close all documents except the selected document.

To move a document from one text window to another, drag its name from the first text
window’s file list into the second text window’s file list. You can select and move multiple
documents at once.

To save the current document, you can choose Save from the File menu or the action menu.
To save multiple documents at once, select them and choose Save from the Action menu, or
Control-click on them and select Save in the contextual menu. To save all documents in the
window at once, hold down the Option key and choose Save All from the Action menu.
Window Anatomy 69

The Status Bar
The status bar is located directly to the left of the horizontal scrollbar. The status bar
displays the current cursor position and contains popup menus showing the language, text
encoding, and line break format of the current document. To hide the status bar, turn off the
Show Status Bar option in the Appearance preference panel.

You can also use the options in the Application preference panel to hide or show individual
items on the status bar.

Cursor Position
This section of the status bar shows the current line and character position of the insertion
point.

Language
The Language popup menu displays the language mapping for the current document. You
can change this mapping by choosing a different language from the popup.

Text Encoding
The Text Encoding popup menu displays the encoding used to open the current document.
You can change the encoding in which the document will be saved by choosing a different
encoding from the popup.

To choose an arbitrary encoding, even one not currently displayed, choose Other from the
popup and pick your desired encoding from the resulting list.

Line Break Type
The Line Break Type popup menu shows the line break format of the current document’s
disk file. You can change the line break format with which the file will be saved by
choosing it from the popup.

Document Statistics
This section of the status bar dynamically displays the number of characters, words, and
lines in the document or the active selection (if any).
70 Chapter 4: Editing Text with TextWrangler

You may click on the statistics section at any time to toggle between displaying info for the
whole document and for the selection range. (This icon will be white when TextWrangler’s
displaying statistics for the whole document, and green when it’s displaying statistics for
the current selection.)

Key Equivalents for Status Bar Items
You can assign key equivalents to the items on the status bar from the Status Bar entry in
the Menus & Shortcuts preference panel. For example, you can assign a key equivalent to
the Line Breaks popup, then press that key combination and use the arrow keys to select the
desired line break option directly from the keyboard.

The Gutter and Folded Text Regions
The gutter is the vertical bar directly to the left of the text area, and immediately to the right
of the line number display bar (not shown), which contains indicators for folded and
foldable regions (automatically-generated folds).

Folding Controls
The triangular controls displayed in the gutter are disclosure triangles; you can click on
them to fold or expand regions within the document. If there are nested folds present,
Option-clicking on the outermost fold will expand or collapse that fold and all subordinate
folds.
Window Anatomy 71

You can also employ the commands on the View menu to expand or collapse folds, or fold
manually-selected ranges of text. (See “The View Menu” on page 73.)

The linear bars displayed in the gutter are range end indicators. They show where each
foldable range ends.

When you fold a range, TextWrangler displays a fold indicator within the document to
represent that range. To expand the range, you can either click on the disclosure triangle or
double-click the fold indicator.

If you expand a range by double-clicking the fold indicator, the entire range will remain
selected after expansion.
72 Chapter 4: Editing Text with TextWrangler

The View Menu
This menu contains commands which you can use to toggle the display of navigational
elements in text windows, to fold and expand regions of text, to select documents, and to
get information on documents and files.

Text Display
This submenu contains commands which control various text formatting and display
options. You can set key equivalents for any of these commands under the Text Display
entry of the View menu in the Menus & Shortcuts preference panel. You can also adjust
many of the same options via the Text Options command in the Edit menu.

Show/Hide Fonts
This command toggles display of the standard system font panel, which you can use to set
the font, font size, text style, and tab spacing for the active document.

IMPORTANT The chosen display style will be used for all text in the window; TextWrangler does not
support the use of selective text styles.

Note The font changes you make by using this command affect only the active document.
To set the default font, size, style, and tab width for all documents, use the “Default
Font” option in the Editor Defaults preference panel.

Soft Wrap Text
This command toggles the use of soft wrapping in the current document. (See “Soft
Wrapping” on page 86.)

Show/Hide Page Guide
This command toggles display of the page guide in the current document. (See “Page
guide” on page 84.)

Show/Hide Tab Stops
This command toggles display of tab stops in the current document. (See “Tab stops” on
page 84.)

Show/Hide Line Numbers
This command toggles display of line numbers in the current document. (See “Line
numbers” on page 84.)

Show/Hide Gutter
This command toggles display of the gutter in the current document. (See “The Gutter and
Folded Text Regions” on page 71.)

Show/Hide Invisibles
This command toggles display of invisible characters in the current document. (See “Show
invisibles” on page 84.)

Show/Hide Spaces
This command toggles display of invisible characters in the current document. (See “Show
invisibles” on page 84.)
The View Menu 73

Show/Hide Toolbar
Choose this command to hide or show the toolbar in the frontmost text window. (See “The
Toolbar” on page 63.)

Show/Hide Navigation Bar
Choose this command to hide or show the navigation bar in the frontmost text window.
(See “The Navigation Bar” on page 65.)

Show/Hide Editor
Choose this command to hide or show the editing pane within a disk browser or results
browser window.

Show/Hide Files
Choose this command to hide or show the file list within the frontmost text window. (See
“The File List” on page 68.)

Hide Currently Open Documents
You may ignore this command, which is present but always disabled.

Show/Hide Recent Documents
Choose this command to hide or show the “Recent Documents” section within a window’s
file list.

Balance
This command locates the pair of parentheses, braces, brackets, or smart (curly) quotes that
surround the insertion point or the current selection. If there are unmatched delimiters
within this area, TextWrangler beeps. You can also double-click a delimiter character to
invoke this command.

When syntax coloring is active for a document, Balance (including auto-balance) will
ignore balance characters that appear inside strings or comments.

Balance & Fold
This command behaves identically to Balance (above) except that in addition to locating
the paired delimiters, TextWrangler will also generate a fold range including the delimiters
and all the text they contain.

Fold Selection
This command generates a fold range from the currently selected text. You can use Unfold
Selection (below) or double-click the fold indicator to expand the fold. When there is no
active selection, this command is disabled.
74 Chapter 4: Editing Text with TextWrangler

Unfold Selection
This command will expand any text folds in the selection range. When there is no active
selection, this command is disabled.

Collapse Enclosing Fold
This command will collapse the auto-generated fold that most closely surrounds the current
insertion point (or the start of the selection range).

Collapse All Folds
This command will collapse all automatic fold points in the current document.

Expand All Folds
This command will expand all text folds in the current document, whether automatically
generated or manually created.

Previous Document/Next Document
You may use these commands to switch between documents within the frontmost text
window. (By default, TextWrangler selects documents in most-recently viewed order, but
you can choose to have it select documents in name order via an expert preference. For
details, see the “Expert Preferences” page in TextWrangler’s built-in Help.)

Move to New Window
Choose this command to open the active document of the frontmost text window into its
own text window. If the frontmost text window contains only one document, this command
will be disabled.

Open in Additional Window
Choose this command to open the active document of the frontmost text window into an
additional text window, while leaving it open in the current window.

Reveal in Finder
Choose this command to open a Finder window which will display the active document’s
file. If the active document is not associated with a file, this command will be disabled.
Using this command is the same as clicking (without dragging) the document proxy icon in
the toolbar.

If the selected text in a document is the name of a file, hold down the Option key as you
open the File menu and choose the Reveal Selection command to have TextWrangler open
a Finder window which will display that file.

Go Here in Terminal
This command is enabled when the active document has a corresponding disk file. Choose
this command to open a Terminal window with the current working directory set to the
document's parent directory.
The View Menu 75

Go Here in Disk Browser
This command is enabled when the active document has a corresponding disk file. Choose
this command to open a disk browser in the document's parent directory.

Cursor Movement and Text
Selection
TextWrangler gives you several ways to move the insertion point and change the selection.
You can click and drag using normal Macintosh text selection techniques or you can use
various keys on the keyboard.

Clicking and Dragging
You can select text in an editing window in the normal Macintosh fashion, by clicking and
dragging. Holding down the Shift key while clicking or dragging extends the selection.

Triple-clicking is the same as clicking in a line and then choosing the Select Line command
from the Edit menu.

You can hold down the Command or Option keys when clicking or double-clicking to
trigger special actions:

TextWrangler optionally allows you to select entire lines by clicking in the left margin of an
editing window. (If you have line numbers displayed, via the Show Line Numbers option in
the Appearance preference panel, you can click in the line number as well.) You can click
and drag to select multiple lines, double-click to select an entire paragraph, or double-click
and drag to select a range of paragraphs. A checkbox in the Editing preference panel,
labeled Allow Single-Click Line Selection, controls this behavior. If the checkbox is turned
off, clicking in the left margin simply moves the insertion point to the beginning of the
clicked line.

No Modifier Shift

Click Move insertion point Extend selection

Double-
click

Select word Extend selection to
word

Triple-click Select line –none–

Option Command

Click –none– Open URL

Double-
click

Look up selected
word in
programming
reference

–none–
76 Chapter 4: Editing Text with TextWrangler

Arrow Keys
You can use the arrow keys to move the insertion point right, left, up, and down, and
augment these movements with the Command, Option, and Control keys:

Holding down the Shift key extends the selection. For example, pressing Shift-Option-
Right Arrow selects the word to the right of the insertion point.

CamelCase Navigation
TextWrangler supports CamelCase navigation. CamelCase (also “camel case”) is the
practice of writing intercapitalized compound words or phrases; it is used as a standard
naming convention in several programming languages, and as an automatic link creation
method in wiki content.

You can move from one part of a CamelCase word to the next by holding the Control key
down and tapping the right (or left) arrow key to jump to the next (or previous) transition
from lower-case to upper-case or the next word boundary, whichever comes first.

Rectangular Selections
By holding down the Option key as you drag, or holding down the Shift and Option keys
while clicking, you can select all text lying within a specified rectangular area (column).
You can then perform all of the normal editing operations on this “rectangular selection,”
such as Cut, Copy, Paste, or drag and drop, as well as text transformations such as Change
Case, Shift Left, Shift Right, Entab, Detab, Increase Quote Level, Decrease Quote Level,
Strip Quotes, and Zap Gremlins.

IMPORTANT Rectangular selection and soft wrapping are mutually incompatible. When soft wrapping is
enabled, dragging the mouse to make a selection will always result in a normal (non-
rectangular) selection even if you hold down the Option key. Conversely, if you have made
a rectangular selection in a hard wrapped document, the Soft Wrap Text option in the Text
Options popup menu or sheet will be disabled.

No Modifier Option Command Control

Up Up one line Up one screen Start of
document

(scroll view up)

Down Down one line Down one
screen

End of
document

(scroll view
down)

Left Left one
character

Left one word Start of line Previous case
transition or
word boundary

Right Right one
character

Right one word End of line Next case
transition or
word boundary
Cursor Movement and Text Selection 77

Working with Rectangular Selections
Commonly, while working with text, you will be performing actions on a line-by-line
basis; for example, when making a selection, you will start by selecting the contents of one
line before moving on to the next. However, if you need to deal with tabular data, it can be
useful to think in terms of rectangles or blocks of text that include parts of several lines.
This is where you can make use of TextWrangler’s ability to manipulate rectangular
selections.

IMPORTANT You cannot make or insert rectangular selections into a document which is soft wrapped, so
you must turn off soft wrap before using this technique. (See “Soft Wrapping” on page 86.)

Example: Moving a Column
Consider you have the document shown below, and you want to move only the bottom left
column (the one that says “This text goes in the middle”) and move it in between the top
left and top right columns. To do this using standard selection methods, you would have to
perform five separate cut-and-paste operations. However, by using rectangular selections,
you can move the whole column in one operation.

To start, hold down the Option key while dragging over the bottom left column, until you
get a selection that looks like this:
78 Chapter 4: Editing Text with TextWrangler

Choose Cut from the Edit menu (or press Cmd-X) to cut the selected text out of the
document and place it on the Clipboard.

Next, you must paste in the text you just cut. You can do this in either of two ways:

• Use the Paste Column command, which will “paste down” from the current
insertion point. This allows you to directly insert text without needing to make a
rectangular selection first.

• Make a rectangular selection as described below, and then use the standard Paste
command. This procedure is less efficient for moving columnar data than using the
Paste Column command, but it allows you to select and replace a region of text as
well as simply inserting text.

To manually make a rectangular selection prior to pasting text, position the arrow pointer
just to the left of the top right column, press and hold the Option key, press the mouse
button, and drag straight down until you have a very thin vertical selection just to the left of
the whole column, as shown below.
Cursor Movement and Text Selection 79

Now, paste the text you previously cut back in, and the task is finished.

Filling Down
When you apply the Paste Column command and the pasted text contains no line break (or
only a single line break at the end), TextWrangler will perform a “fill down”, placing a
copy of the pasted text on each line within the selected column.

Further Details
Some word processors also provide support for rectangular selections which works a little
differently than TextWrangler's, so you may wish to keep this difference in mind. Typically,
when you copy a rectangular selection of text to the clipboard in these programs, they
handle that piece of text differently than text copied from a line-by-line selection. Then,
when you paste, the text will be entered in a block, even when you have not made a
rectangular selection to paste into.

TextWrangler does not do this. Instead, when you copy a rectangular selection to the
clipboard, TextWrangler turns the selection into a series of individual lines, which is why
you must make a rectangular selection before pasting, so TextWrangler will know it should
paste the text in block fashion. Though this method does require an extra step, it is more
flexible, because you can select a set of lines and then paste it as a block, or vice versa.

Scrolling the View
When holding down the Control key, the arrow keys will scroll document windows without
moving the insertion point.

Accelerated Scrolling
When clicking the arrows in a scroll bar, you can use the Command and Option keys to
accelerate the scrolling. These shortcuts also apply if you use a mouse with a built-in scroll
wheel.

Modifier Scroll Speed

none Normal

Command 2x accelerated

Option 3x accelerated

Command+Optio
n

6x accelerated
80 Chapter 4: Editing Text with TextWrangler

The Delete Key
The Delete key deletes the character to the left of the insertion point. If you have selected
text, the Delete key deletes all the text in the selection. You can use the Command and
Option keys to modify the way the Delete key works:

Holding down the Shift key with the Delete key makes the Delete key work the same way
as the Forward Delete key on extended keyboards.

The Numeric Keypad
Some keyboards have a numeric keypad on the right side. Normally, you use the keys on
the keypad to enter numbers.

To toggle the behavior of the keypad between moving the cursor and entering numbers,
hold down the Option key and press the Clear key in the upper-left corner of the keypad.
(This key is also labeled Num Lock on some keyboards.)

When keypad navigation is active, TextWrangler will perform the following actions:

You can use the Shift key with the keys on the numeric keypad to extend a selection. You
can use the Command and Option keys with the 2, 4, 6, and 8 keys as you would the arrow
keys.

Modifier Action

none Deletes character to the left of the insertion
point

Option Deletes to the beginning of the word to the left
of the insertion point

Command Deletes to the beginning of the line

Command+Optio
n

Deletes to the beginning of the document

start of line

7
up

8
Scroll up

9

left

4
show

selection

5
Right

6

end of line

1
down

2
Scroll down

3

Cursor Movement and Text Selection 81

Go To Line Command
To move the insertion point to a specific line, use the Go To Line command in the Search
menu. When you choose this command, TextWrangler opens a Go To Line sheet in the
frontmost document. Type the number of the line you want to move to and click Go To.

The Go to Line command will also accept relative inputs. Entering a value prefixed with +/
- will add that value to the current line number. For example, with the insertion point in line
100, "+75" will move to line 175; "-75" will go to line 25. (As always, when you enter an
unsigned number, TextWrangler will move to the specified line number.)

Note The Go To Line command honors the Use “Hard” Lines in Soft-Wrapped Views option
in the Editing preference panel.

Function Keys
If your keyboard has function keys, you can use the following key equivalents for cutting
and pasting, to scroll, and to move the insertion point.

Note Holding down the Command and Option keys as you press the forward delete key
deletes to the end of the document.

Resolving URLs
To resolve a URL (Uniform Resource Locator), you can Command-click anywhere in the
URL text, or Control-click to bring up the contextual menu and choose Open URL from the
menu. TextWrangler will examine the URL and launch the appropriate helper application.
If the URL is not valid or the helper application cannot be found, TextWrangler will beep.

Note Some Web browsers cannot resolve URLs if the request is sent when the browser is
starting up. If your Web browser does not properly resolve the URL, wait until the
browser has finished starting up and then try again.

Bare Bones Software gratefully acknowledges John Norstad for providing the URL parsing
code.

No Modifier Option Command Shift

del forward delete delete to
end of
word

delete to
end of line

Home scroll to top of
document

move
insertion point
to start of
document

End scroll to end of
document

move
insertion point
to end of
document

Pg Up scroll page up

Pg Dn scroll page
down
82 Chapter 4: Editing Text with TextWrangler

Text Options
You can use the Text Options command to change the way TextWrangler edits text and the
way it displays text and additional elements in its windows. When you choose this
command, TextWrangler will drop a Text Options sheet in the current text window.

The controls on the Text Options sheet are divided into two parts: the Editing options on
the left control the way TextWrangler behaves while you type, and the Display options on
the right control the appearance of the TextWrangler window.

Note You can also change many of these options using the commands in the Text Display
submenu of the View menu.

Changes you make in the Text Options sheet affect only the active document or window. To
set options which will apply to all text windows you open, use the Editor Defaults and
Appearance preference panels.

Editing Options
These options control the way TextWrangler behaves as you type text in the active
document window. Changes you make here affect only that document. To change the
default editing options for documents that you will open in the future, use the Editor
Defaults preference panel.

Use typographer’s quotes
When this option is on, TextWrangler will automatically replaces straight quotes (" ') with
typographer’s quotes (“ ” ‘ ’) in the current document. If you need to type a straight quote
when this option is selected (or to type a typographer’s quote when the option is not
selected), hold down the Control key as you type the " or ' key.

Note We recommend against using this option if you are editing HTML content, email
content, or program code.

Auto-expand tabs
When this option is selected, TextWrangler inserts an appropriate number of spaces when
you press Tab, rather than inserting a tab character.

Additionally, when there are only spaces (and tabs) between the insertion point and the start
of the current line (or the first non-whitespace character on the line), TextWrangler will
delete a tab stop's worth of spaces when you press Delete (Backspace).
Text Options 83

Soft wrap text
When this option is selected, TextWrangler soft-wraps the text in the file to the right margin
that you choose: the page guide, the window width, or a specific number of characters. The
page guide is an arbitrary visual boundary whose width you can set in the Appearance
preference panel. (See “Soft Wrapping” on page 86 to learn how wrapping works in
TextWrangler.)

Language
The Language menu lets you specify which source code language the file uses. The file’s
language setting affects how TextWrangler performs syntax coloring and parses function
names for the function popup menu. TextWrangler generally determines the file’s language
from its filename extension, using the mapping table in the Languages preference panel.

For example, “.cp” files are C++, and “.m” files are Objective-C. You can use this menu to
override those settings for a specific file. To quickly check the language for a file, click the
Text Options popup menu in the toolbar and look at the Languages item.

Display Options
These options determine which controls appear in the frontmost text window, regardless of
whether that window contains one or more documents. Changes you make here affect only
that window. To change the display characteristics for text windows that you will open in
the future, use the Appearance preference panel.

Line numbers
This option displays line numbers along the left edge of the window.

Gutter
This option shows or hides the gutter in the window.

Toolbar
This option shows or hides the toolbar in the window.

Navigation bar
This option shows or hides the navigation bar in the window.

Page guide
This option shows or hides the page guide in the window.

Tab stops
This option shows or hides tab stop indicators in the window.

Show invisibles
This option shows or hides non-printing characters in the window. Select this option when
you want to see line breaks, tabs, and “gremlins” (other invisible characters). TextWrangler
uses these symbols:

Symbol Meaning

Δ tab

◊ space
84 Chapter 4: Editing Text with TextWrangler

If you turn on Show Invisibles, the Show Spaces option will become available, allowing
you to enable display of the visually “noisy” space characters if you desire.

Syntax Coloring
When this option is selected and the editing window contains a document in a
programming language TextWrangler recognizes, TextWrangler displays keywords and
other language elements in color.

TextWrangler uses several methods to determine what language (if any) to use for a
particular file. The primary way to activate syntax coloring in a document is simply to save
it with a file name extension that indicates what programming or markup language the file
contains. For example, if you save your file with “.html” at the end of the file name,
TextWrangler will color your HTML tags and anchors. Some other common suffixes are
“.text” for Markdown files, “.py” for Python files, and “.rb” for Ruby files.

For any file whose name does not have an extension, or whose name has an extension that
does not match any of the mappings in TextWrangler’s Languages preference panel,
TextWrangler will attempt to guess what language the file contains and apply the
appropriate syntax coloring. If TextWrangler guesses wrong (or is unable to guess), you
can resort to the Language submenu of the Text Options popup menu in the toolbar or the
Language popup menu in the Text Options sheet, which gives you the ability to manually
select any installed language to be applied to the document, regardless of its name. If you
then save the file, your manual language selection will persist and override any suffix
mapping.

By default, TextWrangler recognizes over 20 different languages and several dozen suffix
mappings. You can add new suffixes to map to existing languages or (by installing third-
party language plug-ins) add syntax coloring support for new languages as well. All the
specific languages that TextWrangler recognizes, and the suffixes or extensions it expects
for them, are listed in the Languages preference panel, and suffix mappings can also be
changed there. You can choose the colors that TextWrangler uses for syntax coloring in the
Text Colors preference panel.

Note TextWrangler will recognize and syntax-color VBScript embedded within HTML via the
<%…%> and <SCRIPT>…</SCRIPT> tags.

• non-breaking space

¬ line break

¶ page break

¿ other non-printing or
special characters

Symbol Meaning
Text Options 85

How TextWrangler Wraps Text
TextWrangler wraps text in one of two ways: soft wrapping or hard wrapping.

Soft wrapping is like the word wrapping found in most word processors. When the
insertion point reaches a right margin as you type, the word processor automatically moves
the insertion point to the beginning of the next line. You never need to type a carriage return
(that is, press the Return key) at the end of a line, but only to start a new paragraph. If you
place the insertion point in the middle of a paragraph and start typing, the text reflows so
that words that are pushed out beyond the right margin end up on the next line. Usually, you
use soft wrapping when you are editing memos, mail messages, and other prose. It is also
useful for HTML documents. With soft wrapping, you generally do not have to scroll the
window horizontally to see all the text in the file.

Unlike soft wrapping, hard wrapping requires a carriage return at the end of every line.
When soft wrapping is turned off, TextWrangler lets you type as far as you like on a line,
and never automatically moves the insertion point to the beginning of the next line. You
have to manually type a carriage return to start a new line. You usually use hard wrapping
to write programs, tabular data, resource descriptions, and so on. With hard wrapping, each
line of source code or data appears on its own line in the window, although you may have to
scroll the window horizontally to see the entire line if it is long.

Note When you use the Hard Wrap command on a rectangular selection, lines will be
padded with spaces as necessary.

Tip If you open a file in TextWrangler that appears to consist of a few very long lines, you
should select the soft wrapping option for that file.

This table summarizes the commands to soft-wrap and hard-wrap text. The sections that
follow give details about using the wrapping commands.

Soft Wrapping
To turn on soft wrapping for the active window do one of the following:

• Choose Soft Wrap Text from the Text Display submenu of the View menu.

• Select the Soft Wrap Text option from the Text Options sheet by choosing Text
Options from the Edit menu.

To do this… Do this…

Soft-wrap text as you type Choose Soft Wrap Text from the
Text Display submenu of the View
menu or select the Soft Wrap Text
option from the Text Options sheet

Convert hard-wrapped text to
soft-wrapped text

Use the Remove Line Breaks
command in the Text menu, and
activate soft wrapping

Convert soft-wrapped text to
hard-wrapped text

Use the Add Line Breaks command
in the Text menu

Hard-wrap text to a specific
margin, reflowing paragraphs as
needed

Use the Hard Wrap command in
the Text menu
86 Chapter 4: Editing Text with TextWrangler

To specify the wrapping margin, use the Text Options command. You can have text wrap at
the Page Guide, the edge of the window, or a specific character position.

IMPORTANT Soft wrapping and rectangular selection are mutually incompatible. When soft wrapping is
enabled, dragging the mouse performs normal (non-rectangular) selection even if the
Option key is held down; when there is a rectangular selection, the Soft Wrap Text option is
unavailable in the Text Options popup menu and dialog box.

To make soft wrapping the default for new windows, select the Soft Wrap Text option in
the Editor Defaults preference panel. You can also use the settings in that panel to specify
the default wrapping margin.

To “freeze” the current line endings and hard-wrap the text at the current soft wrapping
settings, use the Add Line Breaks command to insert a carriage return at the end of each
line.

While TextWrangler prefers to break lines at white space when soft-wrapping, lines will be
broken as close as possible to the designated wrap width if they do not contain any white
space. This way, long URLs and other extended strings of characters are visible without
requiring horizontal scrolling.

Soft Wrapping with Indentation
You can control how TextWrangler indents soft wrapped text by means of the Soft
Wrapped Line Indentation option in the Editing preference panel. Choose Flush Left to
have all lines of each paragraph below the first wrap flush to the left margin of the window.
Choose First Line to have all subsequent lines of a paragraph wrap to the same indent level
as its first line. Choose Reverse to have all subsequent lines of each paragraph wrap
indented one level deeper than its first line.

Exporting Soft-Wrapped Text
TextWrangler will not insert hard line breaks into softwrapped files upon saving them. If
you wish to add hard line breaks to a softwrapped file, use the Hard Wrap or Add Line
Breaks command.

Soft Wrapping in Browsers
Use the Text Options command from the Edit menu to control soft wrapping (and other
display options) for files viewed in a browser window.

Soft Wrapping and Line Numbers
The preference Use “Hard” Lines in Soft-Wrapped Views controls how line numbers are
displayed when you use soft wrapping. If this option is turned on, the line number bar,
cursor position display, and Go To Line commands in editing views will use line numbers
that correspond to “hard” carriage returns in the document, rather than to soft-wrapped line
breaks. To restore the behavior of previous versions of TextWrangler, turn this preference
off.

Hard Wrapping
The easiest way to hard-wrap text is to type a carriage return (by pressing the Return key)
whenever you want to start a new line. If you are editing program source code, it is
generally best to turn off soft wrapping altogether.
How TextWrangler Wraps Text 87

To turn off soft wrapping for the active window, do one of the following:

• Choose Soft Wrap Text from the Text Options popup menu in the toolbar.

• Deselect the Soft Wrap Text option from the Text Options sheet box by choosing
Text Options from the Edit menu.

To turn off soft wrapping for new windows, deselect the Soft Wrap Text option in the
Editor Defaults preference panel.

TextWrangler provides two ways to convert soft-wrapped text into hard-wrapped text. The
first is a simple technique that uses a single command; the second is a bit more complicated
but gives you much more control over wrapping.

Hard-Wrapping Soft-Wrapped Text
To convert soft-wrapped text to hard-wrapped text, use the Add Line Breaks command in
the Text menu. This command inserts a carriage return at the end of every line of the text as
it appears in the window. If your wrapping margin is the edge of the window, you will get
different results depending on the width of the window.

If the current document contains a selection range, Add Line Breaks will affect only the
selected text; if there is no selection, this command will affect the entire contents of the
current document.

Note The Add Line Breaks command does not turn off soft wrapping.

Hard Wrapping and Filling Text
The Hard Wrap command in the Text menu offers more flexibility for hard-wrapping text
than the Add Line Breaks command. Whereas Add Line Breaks merely “freezes” the line
breaks displayed in a document by inserting carriage returns, the Hard Wrap command
allows you to wrap text to any arbitrary width, while also reflowing or indenting
paragraphs.

If the current document contains a selection range, Hard Wrap will affect only the selected
text; if there is no selection, this command will affect the entire contents of the current
document.

When you choose the Hard Wrap command, TextWrangler opens a sheet in the frontmost
document:
88 Chapter 4: Editing Text with TextWrangler

The controls in the left half of the sheet control the maximum width of lines after hard
wrapping, and whether wrapped lines should be consolidated to fill paragraphs to the
specified width. The controls in the right half determine how paragraphs should be
indented.

The “Break Lines at” buttons let you specify the wrapping margin.

If the Paragraph Fill option is selected, TextWrangler forms the lines into paragraphs before
wrapping the lines. An example is the best way to illustrate this option.

Suppose you start with this text:

This is what happens when you wrap to 65 characters with Paragraph Fill off:

TextWrangler breaks the long line at a width of 65 characters (twice, because the line was
so long) and leaves the short lines alone.

This is what happens to the same text when you wrap with Paragraph Fill on:

TextWrangler joins all the lines together to form a single paragraph and then wraps the text
to a width of 65 characters.

The Paragraph Indentation buttons let you indent paragraphs after they have been wrapped.

• Flush Left does not indent paragraphs at all.

• First Line indents all lines in the paragraph by one tab stop.
How TextWrangler Wraps Text 89

• Reverse places the first line in the paragraph flush against the left edge of the
window and indents all other lines in the paragraph by one tab stop.

Mark the Relative to First Line checkbox to make any paragraph indents relative to the
original indent of the first line of the selection or document. If you want paragraph indents
to be relative to the left margin of the document, make sure this checkbox is not marked.

Click the Wrap button to perform the Hard Wrap command. Click the Don’t Wrap button to
save the settings without changing the text.

Tip If you hold down the Option key as you choose the Hard Wrap command,
TextWrangler uses the last Hard Wrap settings to perform the operation, without
displaying a sheet.

The Insert Submenu
In addition to typing, you can use the commands in the Insert submenu of the Edit menu to
insert text into the active window. These commands, which are also available in the Insert
popup menu (left) in the document toolbar, let you insert the contents of other files, folder
listings, Macintosh Toolbox templates, and page break characters.

Inserting File Contents
The File Contents command inserts the contents of one or more files into the document you
are editing. When you use this command, TextWrangler displays an Open sheet in which
you can choose the files to insert. To select more than one file hold down the Shift key or
Control key as you click the files. TextWrangler then inserts the contents of the selected
files at the insertion point or replaces the selected text. If you select more than one file, the
files will be inserted in alphabetical order, according to file name.

Tip You can also drag a file’s icon from the Finder into a TextWrangler editing window to
insert the contents of that file.

Inserting File & Folder Paths
The File/Folder Paths command inserts the full path information for the selected files and
folder into the document you are editing. When you use these commands, TextWrangler
displays a sheet that lets you select the files and/or folders. TextWrangler inserts the path
information at the insertion point or replaces the selected text.

Inserting a Folder Listing
The Folder Listing command inserts a textual listing of a folder hierarchy. When you use
this command, TextWrangler displays a sheet that lets you select a folder to insert, and
inserts that folder’s listing at the insertion point or replaces the selected text.

Tip You can also drag a folder’s icon from the Finder into a document to insert a folder
listing.
90 Chapter 4: Editing Text with TextWrangler

Inserting a Page Break
To insert a page break, choose the Page Break command from the Insert submenu of the
Edit menu. This will place a form feed character (ASCII 12) at the location of the insertion
point. TextWrangler uses this character to indicate the start of a new page when printing.

Inserting Time Stamps
To insert the current time, choose Short Time Stamp or Full Time Stamp from the Insert
submenu of the Edit menu. These commands will insert short and long forms (respectively)
of the current date and time at the location of the insertion point.

Inserting an Emacs Variable Block
To insert an Emacs variable block describing the option settings for the current document,
choose Emacs Variable Block from the Insert submenu of the Edit menu. This will bring up
a sheet which you can use to review and confirm the desired options. (Since depending on
what options are set, the resulting block can be rather verbose, you may wish to prune the
resulting text.)

These options specified in this block will take precedence over saved document state when
TextWrangler opens the document. (Inserting these explicit settings can be useful when
sharing the document with others.)

Comparing Text Files
If you have ever had to reconcile changes between two different versions of a file, or even
larger numbers of documents, you know how laborious this task can be. TextWrangler’s
Find Differences command is a powerful tool for doing such comparisons faster and more
effectively. Using Find Differences, you can compare any two files, or the contents of two
folders. You can also specify options to eliminate minor variations in document content,
such as different amounts of white space, from being considered.

If you have two or more text documents open, choose the Compare Two Front Documents
command on the Search menu to quickly compare the topmost two documents.
(TextWrangler will automatically determine which document is newer and which older
based on their modification dates.)
Comparing Text Files 91

To compare two arbitrary files or folders:

1 Choose the Find Differences command from the Search menu.

 TextWrangler opens the Find Differences dialog box.

2 Click the Compare Files radio button.

3 Use the New and Old popup menus to select the documents you want to compare.

If the files you want to compare are already open, they will appear in the popup menus;
otherwise, you can select them by clicking the Other button next to one of the popup
menus, or by dragging the files’ or folders’ icons from the Finder into the New and Old
boxes in the Find Differences dialog.

You can also select recently opened files from the Recent Files item on the New and
Old popup menus.

The terms “new” and “old” are used for convenience since most often you will want to
find changes between two versions of the same file saved at different times. However,
the Find Differences command can be used to compare any two files or folders.

4 Select the Compare options that apply.

When the Case Sensitive option is selected, TextWrangler distinguishes uppercase from
lowercase letters; deselect this option if you want TextWrangler to consider uppercase
and lowercase letters the same.

When Ignore Curly Quotes is selected, TextWrangler treats typographers’ quotes the
same as straight quotes.

When one or more of the Ignore Spaces options is selected, TextWrangler will ignore
the corresponding presence of whitespace at the specified positions while comparing
files.

5 Click Compare to perform the comparison.

Alternatively, you can use the ‘twdiff’ command line tool to specify two files or folders,
and have TextWrangler perform a Find Differences on them.
92 Chapter 4: Editing Text with TextWrangler

If the two files are different, TextWrangler tiles the documents and opens a Differences
window below them.

The Differences window lists all the differences between the new file and the old file. To
see the differences in context, click a line in the Differences window; TextWrangler scrolls
and selects that spot in both files.

The entire range of difference in each file is drawn with a grey background, while
individual differences within the range are highlighted with the standard selection color.

To view and apply individual differences within a line or region (i.e. sub-line differences),
just click on the grey triangle to expand the list and select the appropriate character
difference.

Use the Apply to New and Apply to Old buttons in the Differences window to transfer the
differing text from the new file to the old file, or vice versa. After you use one of these
buttons, TextWrangler italicizes the entry in the Differences window to indicate that you
have already applied that change.

You may also apply all differences by clicking in the differences list, then choosing Select
All in the Edit menu, and using the Apply to New or Apply to Old button to apply the
differences to the desired file.

If a Differences window is open and is the frontmost window, the Compare Again
command in the Search menu will recompare the two files being compared and refresh the
list of differences accordingly. The small button (with the circular icon) between the Apply
to New and Apply to Old buttons performs the same function.

Compare Against Disk File
You can use the Compare Against Disk File command to compare the contents of the active
document against the disk file for that same document. This capability makes it easy to
locate in-progress changes to a document.
Comparing Text Files 93

Multi-File Compare Options
You can compare multiple files at once by selecting the Folders button in the Find
Differences dialog; TextWrangler lists all the files and marks those that are different with a
bullet. You have the additional options described below.

List identical files
Normally, when you compare folders using the Find Differences command TextWrangler
presents you with three lists: one list of the items that are in the first folder but not in the
second folder, another list of the items that are in the second folder but not in the first one,
and another list of the items that appear in both folders.

The list of items that appear in both folders generally displays a bullet next to items that are
not identical. For example, if you have an archived mail folder that you are comparing
against a current mail folder, mailbox files that appear in both the old and new file will all
be listed together; however, if there have been any changes to the contents of particular
mailbox files, the changed mailbox files will be listed with bullets next to them.

If you are comparing very large folders, however, the list of common items can be
extremely long, making the flagged items hard to find. When you deselect the List Identical
Files checkbox, TextWrangler will list only the flagged items (the ones that have been
changed) in the list of items that appear in both folders.

Flatten hierarchies
Normally, TextWrangler retains the hierarchy of the files being compared in a folder. In
other words, when comparing folders, it looks in each subfolder of the first folder you
select and tries to match it with a file of the same name in the same subfolder of the second
folder, and so on down for all subfolders. If you choose Flatten Hierarchies, TextWrangler
considers the files in the folders as a single flat list, allowing a file in one folder to match a
file of the same name in the other folder, regardless of whether they are in the same
subfolder in both hierarchies.

Skip (…) folders
If this option is set, TextWrangler skips subfolders whose names are enclosed in
parentheses when comparing folders.

Only compare text files
If this option is set, TextWrangler does not include non-text files when comparing folders.

Use file filter
File filters allow you to select files for comparison with great precision. If either file in a
compared pair matches the filter, the files are eligible for comparison; if neither file
matches the filter, the files will not be compared. See Chapter 7, “Searching,” for more
information on creating, editing, and using file filters.

Note When comparing folders with the Find Differences command, TextWrangler applies
any specified file filter to the contents of the resulting “Only in new” and “Only in old”
lists, so that only those files that match the filter criteria will appear in the lists.
94 Chapter 4: Editing Text with TextWrangler

Using Markers
A marker is a selection range that you can name. If a document contains any markers, you
can select them from the Mark popup menu to move quickly to the specified section of the
file. (The navigation bar must be visible in order to access the Mark popup menu. Choose
Show Navigation Bar from the View menu to display the Navigation bar if it’s hidden.)

Note If you are programming, you may be tempted to use markers to mark functions in
your source code. However, if TextWrangler supports the language you are using, this
is usually unnecessary; your functions will automatically appear in the Function popup
menu in the document window.

Setting Markers
To set a marker:

1 Select the text you want to mark.

2 Choose the Set Marker command from the Mark popup menu (identified by the icon
shown at left), or Control-click the selected text and choose Set Marker from the
contextual menu.

TextWrangler opens a sheet so that you can name the marker. If you have selected a
range of text, the sheet will contain the first characters of the selection.

3 Click Set to set the marker.

Tip If you hold down the Option key as you choose Set Marker, TextWrangler sets the
marker using the leading characters of the selected text as the name of the marker,
without displaying a dialog box.

Clearing Markers
To clear a marker:

1 Choose the Clear Markers command from the Mark popup menu.

 TextWrangler displays the list of markers.

2 Select the marker you want to delete.

3 Click Clear to clear the marker.

QuickTime™ and a
TIFF (PackBits) decompressor
are needed to see this picture.
Using Markers 95

TextWrangler also offers a Clear All Markers command, which clears all the markers in the
document in one fell swoop. You can access this command by holding down the Option key
and using the Mark popup menu.

Using Grep to Set Markers
You can use the Find & Mark All command in the Mark popup menu to mark text that
matches a grep pattern. To learn more about using grep patterns, see Chapter 8, “Searching
with Grep.”

To use a grep pattern to mark text:

1 Choose the Find & Mark All command from the Mark submenu.

 TextWrangler opens the Find & Mark All sheet.

2 Type the pattern in the Search For field and the marker names in the Mark With field.

You can also choose stored patterns from the Patterns popup menu.

3 Click Find & Mark to mark the matching text.

TextWrangler searches the current document for text that matches the pattern and marks it
the way you specified.

Spell Checking Documents
The Check Spelling command in the Text menu lets you check the spelling of the text in
your documents using the system’s built-in spelling checker.

Check Spelling As You Type
To have TextWrangler automatically check spelling as you type for the current document,
select Check Spelling as You Type in the Text menu. To have TextWrangler always check
spelling as you type, turn on the corresponding option in the Editor Defaults preference
panel.
96 Chapter 4: Editing Text with TextWrangler

When TextWrangler encounters a word which is either misspelled or not in the checker’s
dictionary, it will draw a heavy red underline beneath the word. You can either type a
correction, or Control-click on the word and select a suggested correction from the
contextual menu.

To skip the identified word and continue checking, use the Check Spelling command again.
To ignore all further instances of the word, Control-click on it and choose Ignore Spelling
from the contextual menu. To add the word to the dictionary, Control-click on it and choose
Learn Spelling from the contextual menu.

Manual Spell Checking
Choose the Find Next Misspelled Word command from the Text menu, or type its key
equivalent (Command-;) to start checking a document’s spelling. TextWrangler will check
every word in the document in order, starting from the current insertion point.

To check the spelling of all words in the document at once, choose the Find All Misspelled
Words command, or type its key equivalent (Command-Option-;). TextWrangler will draw
an underline under every questioned word in the document. You can then correct the
spelling of any questioned word by typing, or by using the contextual menu to select a
suggested correction or to skip, ignore, or add the word to the dictionary.

To clear the underline from all questioned words, choose the Clear Spelling Errors
command.

The Spelling Panel
In addition to allowing you to correct, ignore, or learn identified words, the Spelling panel
allows you to choose which spelling dictionary TextWrangler will use, and to forget
learned spellings. To use the Spelling panel:

1 Choose the Show Spelling Panel command from the Text menu.

 TextWrangler opens the Spelling panel.

2 Set spelling options.

Choose a dictionary to use by selecting it from the Dictionary popup menu. Select Skip
All Caps to avoid checking words consisting of only capital letters. (Note that these
settings persist across runs of the application.)
Spell Checking Documents 97

3 Click Find Next to begin checking.

TextWrangler scans the document, and stops at the first misspelled or unrecognized
word. This word is displayed in the text field to the left of the Correct button. Possible
corrections for the questioned word are listed in the Guess box above.

4 If the questioned word is misspelled, choose the correct spelling from the Guess list or
type it yourself in the Correct field.

5 Click one of the Spelling panel’s action buttons to handle the questioned word.

Click Ignore to ignore further instances of the questioned word, without adding it to the
active dictionary.

Click Guess to display a list of possible corrections.

Click Find Next to ignore this instance of the questioned word and continue checking.

Click Correct to replace this instance of the questioned word with the text in the
adjacent text field.

Click Learn to add the questioned word to the active dictionary.

Click Forget to remove the questioned word from the active dictionary.
98 Chapter 4: Editing Text with TextWrangler

C H A P T E R

5
Text Transformations
This chapter describes the range of powerful text transformation commands
offered by TextWrangler. In addition to providing individual commands which
you can apply to the current document, TextWrangler allows you to run Text
Factories which have been created in BBEdit. (Text Factories are sequences of
commands that can be applied to one or more documents.)

In this chapter
Text Menu Commands . 99

Apply Text Filter – 99 • Exchange Characters – 100
Change Case – 100 • Shift Left / Shift Right – 101
Un/Comment Selection – 101 • Hard Wrap – 101
Add Line Breaks – 102 • Remove Line Breaks – 102
Convert to ASCII – 102 • Educate Quotes – 102
Straighten Quotes – 102 • Add/Remove Line Numbers – 102
Prefix/Suffix Lines – 103 • Sort Lines – 103 • Process Duplicate Lines –
104 Process Lines Containing – 105 • Rewrap Quoted Text – 106
Increase and Decrease Quote Level – 106 • Strip Quotes – 106
Zap Gremlins – 107 • Entab – 108 • Detab – 108
Normalize Line Endings – 108

Text Menu Commands
TextWrangler provides a variety of commands which you can use to transform
text in different and useful ways. Most of these commands are situated in the Text
menu, and described in this section. You can also use TextWrangler’s search and
replace capabilities, or additional plug-in tools, to transform text; each of these
topics is covered in a separate chapter.

Unless otherwise specified, each of these commands will be applied to the active
text selection in the frontmost document range, or if there is no active selection, to
the entire contents of the document.

Hold down the Option key when selecting any command from the menu in order
to quickly re-invoke it with its last-used option settings. (These “short form”
commands are also available in the Menus & Shortcuts preference panel, so that
you can set key equivalents for them.)

Apply Text Filter
This command presents a submenu listing all currently available text filters.
(These filters consist of any executable items contained in the Text Filters folder
of TextWrangler’s application support folder. See “Text Filters” on page 30.)
99

When you choose a filter, TextWrangler will pass either the selected text (or the contents of
the active document, if there is no selection) on STDIN to Unix executables or filters, as a
string to text factories, as a reference to a ‘RunFromTextWrangler’ entry point in
AppleScripts, as text input to Automator workflows, and as a source to text factories. (If an
AppleScript script does not have a ‘RunFromTextWrangler’ entry point, TextWrangler will
call its run handler, again passing a reference to the current selection range.)

AppleScript scripts and Automator workflows should return a string which TextWrangler
will use to replace the selection range, while Unix filters should write to STDOUT.

Note TextWrangler no longer supports text factory execution.

Apply Text Filter <last filter>
This command will reapply the two characters according to the following rules:

Exchange Characters
This command swaps two characters according to the following rules:

• If there is no selection and the insertion point is not at the beginning or end of a
line or of the document, this command transposes the two characters on either side
of the insertion point.

• If the insertion point is at the beginning of a line or document, this command
transposes the two characters following the insertion point.

• If the insertion point is at the end of a line or document, this command transposes
the two characters before the insertion point.

• If there is a selection, this command transposes the characters at either end of the
selection.

If you hold down the Option key as you choose this command, Exchange Characters
becomes Exchange Words. Exchange Words behaves like Exchange Characters except that
it acts on entire words rather than individual characters.

Change Case
This command lets you change between uppercase and lowercase characters, or capitalize
word, line, or sentence starts. When you choose the Change Case command, the following
sheet appears:
100 Chapter 5: Text Transformations

The radio buttons let you choose how to change the case of the text. The following table
explains the function of each option in this dialog.The radio buttons let you choose how to

In addition to using the Change Case sheet, you can also select individual case change
actions from the Change Case submenu immediately below the Change Case... command.

Shift Left / Shift Right
These commands indent or outdent the selected text by one tab stop. If there is no selection,
this command works on the current line. Hold down the Shift key while choosing these
commands, to have TextWrangler indent or outdent the text by one space instead of one tab
stop.

TextWrangler also entabs and detabs on the fly as you shift text. For example, if the
selected text is indented one tab stop and you apply Shift Left One Space, the tab will be
converted to spaces and the text will be outdented one space. If you then apply Shift Right
One Space, the spaces will be converted back to a single tab.

Un/Comment Selection
This command automates the task of commenting and uncommenting sections of code in
various programming languages. Choose a range of text and apply this command to add or
remove comments to it, depending on its initial comment state. If there is no selection, this
command is disabled.

You can use the Options sheet of the Installed Languages list in the Languages preference
panel to modify or set comment strings for any available languages.

Note If you have set custom comment delimiters for HTML in the Languages preference
panel, those delimiters will be honored when you use the Un/Comment command.
However, they will not affect the operation of the HTML-specific comment commands
on the Markup menu.

Hard Wrap
This command wraps long lines by inserting hard line breaks and can reflow (fill)
paragraphs if desired. See “How TextWrangler Wraps Text” on page 86 for more
information.

This button… Changes the text like this…

ALL UPPER CASE Every character changes to uppercase.

all lower case Every character changes to lowercase.

Capitalize Words The first character of every word changes to
uppercase; all other characters change to
lowercase.

Capitalize
sentences

The first character of every sentence changes to
uppercase; all other characters change to
lowercase.

Capitalize lines The first character of every line changes to
uppercase; other characters are unaffected.
Text Menu Commands 101

Add Line Breaks
This command inserts a hard line break at the end of each line of text as displayed. See
“How TextWrangler Wraps Text” on page 86 for more information.

Remove Line Breaks
This command removes carriage returns and spaces from sections of text. Use this
command to turn text that has hard line breaks into text that can be soft-wrapped. See “How
TextWrangler Wraps Text” on page 86 for more information.

Convert to ASCII
This command will convert certain eight-bit Mac Roman characters (characters whose
decimal values are greater than 128 and less than 255) to 7-bit (printable ASCII range)
equivalents. Converted characters include umlauted and accented vowels, ligatures,
typographer's quotes, and various specialized punctuation forms. This conversion may
entail expansion to multiple characters; for example, in the case of ligatures.

Educate Quotes
This command converts straight quotes (" and ') to typographer’s quotes (“ ” and ‘ ’).

Note You should not use this plug-in to prepare text for use in a web page or an email, as
typographer’s quotes in the Mac character set will generally not be properly displayed
by applications on other platforms.

Straighten Quotes
This command performs the reverse of Educate Quotes; it converts typographer’s quotes (“
” and ‘ ’) to straight quotes (" and ').

Add/Remove Line Numbers
This command displays a sheet which allows you to add or remove line numbers for each
line of the selected text or of the document. You can set the starting number and numbering
increment, as well as whether to include a trailing space, and whether to right-justify the
inserted numbers, by choosing the appropriate options.
102 Chapter 5: Text Transformations

Prefix/Suffix Lines
This command displays a sheet which allows you to insert (or remove) the specified prefix
and/or suffix strings on each line of the selected text or of the document.

If you define both a prefix and a suffix string, TextWrangler will apply them to the text at
the same time.

Note When using the “add prefix”, “add suffix”, “remove prefix”, or “remove suffix” scripting
commands, the string direct parameter is required.

Sort Lines
This command displays a sheet which allows you to sort lines of text by collating them in
alphanumeric order. The sorted lines can be copied to the clipboard, be displayed in a new
untitled window, replace the selection within the original document, or any combination of
the three.

There are also options for ignoring white space at the beginning of lines, taking case
distinctions into account, sorting strings of digits by numerical value instead of lexically,
and sorting in descending rather than ascending order.

By checking the Sort Using Pattern option, you can specify a grep pattern to further filter
the lines to be sorted. If the pattern contains subpatterns, you can use them to control the
sort order based on the contents of the strings they match. When you sort using a grep
pattern, the Case Sensitive option controls the case sensitivity of the pattern match in the
same manner as the equivalent option in the Find dialog.
Text Menu Commands 103

For example, suppose you are sorting a list of cities together with their two-letter state
abbreviations, separated by a tab character. The pattern and subpatterns shown in the figure
will sort the results first by city name and second by state abbreviation. Changing the
contents of the Specific Sub-Patterns field from “\1\2” to “\2\1” will instead sort the results
by state first and by city second.

IMPORTANT When you use a grep pattern with this command, matches are not automatically anchored
to line boundaries, so ambiguous patterns may produce unpredictable results. To avoid this
problem, you should use the line start ^ and line end operators as necessary. Also, keep
mind that the pattern will only be tested against a single line at a time. So, if the pattern
matches one or more sets of multiple lines within in the document, but does not match any
individual lines, TextWrangler will not sort the contents of the document.

Process Duplicate Lines
This command displays a sheet which allows you to locate duplicate lines within a body of
text and operates on them in various ways.

The Matching All option processes all duplicate lines; Leaving One ignores the first of
each set of duplicate lines and processes only the additional ones.

The Numbers Match by Value and Ignore Leading White Space options allow you to
choose whether strings of digits should be evaluated numerically or compared as strings,
and whether white space at the beginnings of lines should be considered.

The Match Using Pattern option allows you to use a grep pattern to further filter the lines to
be processed. You can enter a pattern in the Searching Pattern field, or choose a stored
pattern from the popup menu. The Match Using: radio buttons control what part of the
specified pattern should be used to determine duplication.

IMPORTANT When you use a grep pattern with this command, matches are not automatically
anchored to line boundaries, so ambiguous patterns may produce unpredictable
results. To avoid this problem, you should use the line start ^ and line end operators
as necessary.
104 Chapter 5: Text Transformations

The options on the right-hand side of the sheet allow you to specify how duplicate lines
should be handled once they have been identified. You can copy duplicate lines to the
clipboard (Duplicates to Clipboard), copy them to a new document (Duplicates to New
Document Window), and/or delete them from the current document (Delete Duplicate
Lines). You can likewise specify how to handle the lines that are not duplicated by
choosing Unique Lines to Clipboard and/or Unique Lines to New Document).

Since each of these options is an independent checkbox, you can select any combination of
them that you wish. For example, selecting both Delete Duplicate Lines and Unique Lines
ton Clipboard would delete the duplicate lines from the document and copy them to the
clipboard for pasting elsewhere.

Process Lines Containing
This command displays a sheet which allows you to search the active window for lines
containing a specified search string and then removes those lines or copies them to the
clipboard. The options on the left side of the dialog box control how the search is
performed and the options on the right side control what happens to the lines that are found.

To specify a search pattern, enter it in the Find Lines Containing field. If you do not want
TextWrangler to match text when the letters in the text differ from the letters in the search
string only by case (upper-case versus lower-case), select Case Sensitive.

To search using a grep pattern, select Use Grep and enter the pattern in the text field. You
can also select a predefined search pattern from the Patterns popup menu.

Note If the selection ends in a trailing carriage return, the carriage return will be omitted
from the search string copied into the text field.

The checkboxes on the right of the sheet control the way lines containing the specified
search pattern will be processed. By selecting the appropriate combinations of these
options, you can achieve the effect of applying various editing commands to each line:

• Setting both Copy to Clipboard and Delete Matched Lines on is equivalent to
applying the Cut command.

• Setting Copy to Clipboard on and Delete Matched Lines off is equivalent to
applying the Copy command.

• Setting Copy to Clipboard off and Delete Matched Lines on is equivalent to
applying the Clear command.
Text Menu Commands 105

The Copy to New Document option opens a new, untitled document containing copies of
all lines matching the search pattern, whether or not they are deleted from the original
window. By using this option and turning Copy to Clipboard off, you can collect all
matching lines without affecting the previous contents of the clipboard.

The Report Results option causes TextWrangler to display a dialog reporting the total
number of lines matched, regardless of their final disposition. With all of the other options
turned off, this can be useful for pretesting the extent of a search operation without
affecting the clipboard or the contents of the original window.

Rewrap Quoted Text
This command rewraps hard-wrapped text having Internet-style quoting, while retaining
the quoting characters and quote level.

In Internet messages, it is common to use the “>” symbol to indicate that part of a message
is quoted from a message that is being replied to. As a message gets batted back and forth
in a discussion, the oldest bits of text will end up having several “>” symbols in front of
them. Each line of text in the message has a carriage return at the end, making rewrapping
the text to a different width somewhat problematic.

When you apply this command, TextWrangler first extracts each chunk of quoted text (a
successive set of lines with the same number of markers), and temporarily removes the
markers and any hard line breaks from the chunk of text, forming it into a soft-wrapped
paragraph. TextWrangler then hard-wraps that paragraph according to your chosen settings,
which are the same as for the Hard Wrap command (see “Hard Wrap” on page 101), and
reinserts the quote markers.

Note When you use this command on a rectangular selection, TextWrangler will pad lines
with spaces as necessary.

Increase and Decrease Quote Level
These commands respectively insert or delete a standard Internet quote character (“>”)
from each line of the selected hard-wrapped text, or for the current line if there is no
selection.

Strip Quotes
This command removes all Internet-style quoting from the selected hard-wrapped text, or
from the current line if there is no selection.
106 Chapter 5: Text Transformations

Zap Gremlins
This command displays a sheet which allows you to remove or replace various non-
printing characters, often known as “gremlins”. Use this command when you have a file
that may contain extraneous control characters, or any non-ASCII characters, which you
wish to identify or remove.

The checkboxes on the left-hand side of the sheet determine which types of characters the
Zap Gremlins command affects, while the radio buttons on the right-hand side determine
what to do with gremlins that are found.

Zap Non-ASCII characters
When this option is selected, Zap Gremlins zaps all characters in the file that do not fall in
the 7-bit (or ASCII) range. Examples of such characters include special Macintosh
characters such as bullets (•) and typographer’s quotes (“ and ”, ‘ and ’), as well as all
multi-byte characters. In general, such special characters are those that you type by holding
down the Option key.

Zap Control characters
When this option is selected, Zap Gremlins zaps a specific range of invisible low-ASCII
characters, also known as control characters. Control characters can cause compilers and
other text-processing utilities to malfunction, and are therefore undesirable in many files.

Zap Null (ASCII 0) characters
When this option is selected, Zap Gremlins zaps all instances of the null character (ASCII
0). Like other control characters, nulls can cause many programming tools and text-
processing utilities to malfunction. This specific option is included in case you want to
remove only nulls without affecting other control characters that may be present in a file.

Delete
This option removes the zapped character completely from the text. It is useful if you are
only interested in destroying gremlins and you do not care where they were in the text.

Replace with code
This option replaces the gremlin character with any other character specified in escaped
hexadecimal format. The escape code is formed via the same convention used by the C
programming language: \0x followed by the character code in hexadecimal (base 16). This
option is useful for identifying both the value and the location of gremlin characters. Later,
you can search for occurrences of \0x to locate the converted characters. (Searching for the
grep pattern of “\\0x..” will select the entire character code for easy modification or
deletion.)
Text Menu Commands 107

Replace with <character>
This option replaces the gremlin with the character you type in the text field next to the
radio button. It is useful for identifying the location of gremlins, but not their value. The
replacement character can be specified not only as any typeable character, but also by using
any of the special characters defined for text searches, including hex escapes. (See “Special
Characters” on page 118.)

Note In some cases, this option could be counterproductive, since hex escapes (\xNN) can
themselves be used to insert unprintable characters.

Entab
This command displays a sheet which allows you to set the number of consecutive space
characters which should be converted into tabs. This transformation is useful when you are
copying content from many online sources, which use spaces to line up columns of text. If
you do not use a monospaced font, columns usually will not line up unless you entab the
text first.

Detab
This command displays a sheet which allows you to set the number of consecutive spaces
which should replace each tab. This command is useful when you are preparing text for use
in a program which has no concept of tabs as column separators, for email transmission,
and similar purposes.

Normalize Line Endings
This command converts a document containing mixed line endings to have a uniform set of
line endings.

If you open a file which contains a mixture of Mac, Unix, and DOS/Windows line endings,
the “Translate Line Breaks” option may not suffice to properly convert the document for
viewing and editing. After conversion, the document may appear to not have any line
breaks at all (this usually happens if the first line break in the file is a Mac line break, and
all the rest are Unix), or to have an invisible character at the beginning of each line.

Should this happen, use Normalize Line Breaks to convert the remaining line endings, and
save the document. Once you have done this, the document’s line endings will be
consistent, and TextWrangler’s line-break translation will suffice when you next open it.
108 Chapter 5: Text Transformations

C H A P T E R

6
Windows & Palettes
This chapter describes the commands in the Window menu. These commands
allow you to arrange and access editing and browser windows quickly, and also to
access TextWrangler’s tool and utility palettes.

In this chapter
Window Menu . 109
Minimize Window . 109
Bring All to Front. 109
Palettes . 109

ASCII Table – 110 • Colors – 110 • Scripts – 110 • Stationery – 110
Text Filters – 111 • Windows – 111

Save Default <type of >Window . 111
Arrange. 112
Zoom (key equivalent only) . 112
Cycle Through Windows . 112
Exchange with Next . 112
Synchro Scrolling. 112
Window Names . 112

Window Menu
The Window menu provides easy, centralized access to all of TextWrangler’s tool
and utility palettes, in addition to offering commands that you can use to access
and organize editing and results windows on screen.

Minimize Window
This command puts the frontmost window into the Dock. Click the window icon
in the Dock to restore the window. Hold down the Option key and this command
becomes Minimize All Windows.

Bring All to Front
This command brings all un-minimized TextWrangler windows to the front.

Palettes
The Palettes submenu provides quick access to all of TextWrangler’s numerous
tool palettes and utility windows. Choosing an item from this submenu toggles
display of the corresponding palette.

When moved or resized, palettes now automatically “snap” to the edges of the
screen and the edges of other palettes. You can override this behavior by holding
down the Shift key while dragging or resizing.
109

ASCII Table
The ASCII Table command opens a palette that contains the 127 entries of the ASCII
character set plus all of the standard extended (8-bit) Macintosh character set (Mac
Roman).

The decimal value for each character is displayed in the left-hand column, while in the
right-hand column, the character value is displayed in either hexadecimal “escape” format,
or in URL-encoded format, based on the language mapping of the frontmost text window.
(The values shown for all extended characters are their Unicode values, rather than the
equivalent Mac Roman values.)

Depending on the modifier keys you hold down, the Insert button inserts the selected
character in different formats:

Note You can also double-click on a line in the ASCII table to insert the corresponding
character or character code into the editing window.

Clicking the Show button in the ASCII Table window displays the ASCII value of the
character to the right of the insertion point or the first character of the selection.

Colors
This command opens the system color picker, which you can use to insert hex color values
into source code, or HTML and XML files.

Scripts
The Scripts palette displays all the scripts currently installed in the Scripts subfolder of
TextWrangler’s application support folder. See Chapter 2, “Scripts”, for more information
about using scripts in TextWrangler.

Stationery
The Stationery List is a palette that displays all the stationery pad files present within the
Stationery folder of TextWrangler’s application support folder. You can create a new
document from any of these pads by double-clicking it in this list. Although the document
created will have the content and all the state information from the stationery pad, it is a
new untitled document separate from the stationery pad.

To create a stationery pad, click the Save As Stationery checkbox when saving the file from
TextWrangler. Alternately, any document can be changed into a stationery pad in the Finder
by clicking the Stationery Pad checkbox in the document’s Get Info window.

Clicking Insert while
holding…

Inserts in this
format…

None Escape code appropriate
to the front window—for
example, (\x69) or
(%69)

Option Decimal value—for
example, (105)

Command Literal character—for
example, (i)
110 Chapter 6: Windows & Palettes

By default, items in the Stationery List are displayed in alphabetical order. However, you
can force them to appear in any desired order by including any two characters followed by
a right parenthesis at the beginning of their name. (For example “00)Web template” would
sort before “01)HTML Template.”) For such files, the first three characters are not
displayed in TextWrangler. You can also insert a divider by including an empty folder
ending with the string “-***”. (The folder can be named anything, so it sorts where you
want it.) These conventions are the same as those used by the utilities FinderPop and
OtherMenu.

Note In the Clippings, Filters, Scripts, and Stationery palettes, the Set Key button allows
you to assign key equivalents to any item contained in that window. You can use
combinations of the Command, Shift, Option, and Control keys, plus any single other
key, to create such equivalents, except that any equivalent must contain either the
Command or Control keys (or both). You can also map Function keys directly to items,
with or without the use of a modifier.

Text Filters
The Text Filters palette displays all the text filters currently present in the Text Filters
subfolder of TextWrangler’s application support folder. See Chapter 2, “Text Filters”, for
more information about using text filters in TextWrangler.

Windows
The Windows palette displays the names of all open windows ordered by name and kind.
You can open a file by dragging its icon from the Finder into the Windows palette.

Document windows, which correspond to text files, have a document icon next to them;
display windows, such as browsers and search results windows, do not. A solid diamond to
the left of a window’s name means that the window’s contents have been modified and
have not yet been saved, while a hollow diamond indicates that the window’s state has been
modified but not yet saved.

To bring any window to the front, click its name in the Windows palette. You can select one
or more windows in the list, and choose the Save, Close, or Print commands from the
action menu at the top of the palette. Holding down the Option key changes these
commands to Save All, Close All, and Print All, which apply to all listed windows for
which the given command is possible. You can also Control-click on any selected windows
and apply the Save, Close, or Print commands from the resulting contextual menu.

“Hovering” the mouse over a window name displays a tool tip showing the full window
title; this is useful for names that have been truncated with ellipses (…) because they are
too long to fit within the width of the window. If you hold down the Option key, the tool tip
will appear instantly, with no hovering delay. Holding down the Command key displays the
full pathname for document windows (or other relevant windows such as disk browsers and
FTP browsers).

Save Default <type of >Window
The Save Default Window command stores the position and size of the front window in
TextWrangler’s preferences, and TextWrangler will create all new windows of the same
type with the stored position and size.
Window Menu 111

By default, new windows always stack down and right 20px. If you have saved a default
window size, and that window is of full screen height, new windows will just stack to the
right, and preserve their saved height.

Each type of window has its own default position and size. For instance, the default
position and size for editing windows is different from the default position and size for disk
browser windows.

Window position and size preferences are also keyed to the active screen configuration, so
if you frequently switch screen layouts (as when connecting an external display to a
portable), you can save separate default window preferences which will be applied
depending on which screen configuration is active.

Arrange
The Arrange command cascades all open editing windows in the default fashion: each
successive window will be moved incrementally down and to the right (as described
above).

When you hold down the Option key, this command toggles to Tile Two Front Windows,
and choosing it will produce the specified outcome.

Cycle Through Windows
This command sends the front window behind all the other windows. Hold the Shift key
down when choosing this command to Cycle Through Windows Backwards, i.e. to bring
the rearmost window to the front.

Exchange with Next
This command makes the second window the active window. Choose this command
repeatedly to alternate between the front two windows.

Synchro Scrolling
When you have two or more windows open, Synchro Scrolling makes both files scroll
when you scroll one. This feature is useful to look over two versions of the same file.

Window Names
The last items in the Window menu are the names of all the open documents, browsers, and
other editing windows. Choose a window’s name from this menu (or use its numbered
Command key equivalent, if applicable) to bring that window to the front.

Tip You can also use the Windows palette to quickly select any open window.

Zoom (key equivalent only)
There is no longer a Zoom command in the Window menu, but the key equivalent
Command-/still works. Zoom will produce the same effect as clicking a window’s zoom
box: it makes the active window larger if it is small, or returns it to its original size if it was
previously enlarged by a Zoom command.
112 Chapter 6: Windows & Palettes

When zooming windows, TextWrangler will move the window as little as possible
(consistent with maximizing the window’s size). This behavior is similar to what the Finder
does when zooming a window.
Window Menu 113

114 Chapter 6: Windows & Palettes

C H A P T E R

7
Searching
This chapter describes TextWrangler’s powerful Find and Multi-File Search
commands, now enhanced with a flexible file filtering mechanism. It tells you
how to search for text in the active window or within a set of files. TextWrangler
can also do advanced pattern, or grep, searching. To learn about pattern searching,
you should read this chapter first and then read Chapter 8, “Searching with Grep.”

In this chapter
Search Windows. 115
Basic Searching and Replacing . 116

Search Settings – 118 • Special Characters – 118
Multi-File Searching . 119

Find All and Multi-File Search Results – 121
Specifying the Search Set – 122
Multi-File Search Options – 124 • File Filters – 124
Searching SCM Directories – 127

Multi-File Replacing . 127
Live Search. 128
Search Menu Reference . 129

Search Windows
TextWrangler’s Find and Multi-file Search windows provide a consistent
modeless interface to TextWrangler's powerful text search and replace
capabilities.

If you are familiar with the modal Find dialog used in older versions, you'll
generally feel at home, but there are some important differences and
improvements of which you should be aware:

The Find dialog has been split in two, with a Find window for searching only the
front document, and a Multi-File search window for searches which span more
than one document, including folders, arbitrary open documents, results browsers
from prior searches, etc.).

The set of search options which configure how text is actually searched (for
single-file searches) has been condensed down to a single pair of options:
“Selected text only” and “Wrap around”.

• “Selected text only” affects only the Find All and Replace All
operations: if there is a selection range in the front document, these
operations will affect search only the contents of the selection range if
this option is on, or the entire document (starting from the top) if this
option is off.
115

• “Wrap around” affects only the “Next”, “Previous”, “Replace”, and “Replace &
Find” operations: if this option is on and the search reaches the end (or the
beginning) of the document, then TextWrangler will continue the search from the
appropriate end of the document.

Keyboard navigation is considerably different due to the Find and Multi-File Search
windows’ modeless nature.

• Pressing the Return or Enter key with focus in the Find field will perform “Next”
in the Find window or “Find All” in the Multi-File Search window.

• Pressing the Escape key will close the window.

• Choosing an appropriate command in the Search menu will trigger the
corresponding action in the front Find window.

• TextWrangler supports the following key equivalents to control (toggle) the search
options contained in the Find and Multi-File Search windows. The factory default
key equivalents for these options are as follows:

Case sensitive Control-shift-N
Entire word Control-Shift-E
Grep Control-Shift-G
Selected text only Control-Shift-S
Wrap around Control-Shift-W
Open search history Control-Shift-H
Open saved patterns Control-Shift-P

If these assignments overlap with any keyboard equivalents for clippings that you
have set, or if you just wish to change them, you can do so via the “Find Windows”
section of the Menus & Shortcuts preference panel.

Note The “Replace All” command replaces all occurrences of the search string within the
document (or in the selection if there is one and “Search Selection Only” is checked). If
you wish to replace only occurrences between the current insertion point and the end of the
document, you can instead apply the Replace to End command in the Search menu.

Basic Searching and Replacing
This section describes the basic steps for searching and replacing text in a document. Later
sections in this chapter cover more advanced techniques. To search and replace text in the
front document, follow these steps:

1 Choose Find from the Search menu. TextWrangler opens the Find window.
116 Chapter 7: Searching

2 Type the string you are looking for in the Find text field.

You can use special characters in the Find text field to search for tabs, line breaks, or
page breaks. See “Special Characters” later in this section.

3 Type the replace string (if any) in the Replace text field .

TextWrangler persistently remembers the pairs of search and replace terms that you
have most recently used. If you want to repeat a previous search or replace, you can
choose the appropriate entry from the Search History popup menu at the right of the
Find text field to fill in the Find and Replace fields.

Note The size of both the search and replace terms is limited only by available memory.

4 Turn on any options that you want to apply to your search.

For more info about these options, see “Search Settings” later in this section.

5 Click one of the buttons along the right side of the dialog box.

The following table explains what each of the buttons does.

Once you have entered a search string (and also, if desired, a replace string), you can also
use the commands in the Search menu to find and replace matches (see “Search Menu
Reference” later in this chapter). The table below summarizes the most common
commands you can use at this point.

This button… Does this…

Next Finds the first occurrence of the text in the active
window after (below) the current insertion point.

Previous Finds the first occurrence of the text in the active
window before (above) the current insertion point.

Find All Finds all the occurrences of the search string and
displays the results in a search results browser.

Replace Replaces the current selection with the replace
string.

Replace All Replaces every occurrence of the search string in
the active window with the replace string.

Replace & Find Replaces the current selection with the replace
string, then finds the next occurrence of the text in
the active window.

This command… Does this…

Find Next Finds the next occurrence of the search string.
To reverse the search direction, hold down
Shift.

Replace Replaces the selection with the replace string.

Replace All Replaces all occurrences of the search string
within the document with the replace string.
Basic Searching and Replacing 117

Search Settings
The checkboxes in the Find window lets you control how TextWrangler searches your
document for the indicated text.

Case Sensitive
When this checkbox is selected, TextWrangler treats upper- and lowercase letters as
different letters. Otherwise, TextWrangler treats upper- and lowercase letters as if they
were the same.

Entire Word
When this checkbox is selected, TextWrangler matches the search string only if it is
surrounded in the document text by word-break characters (white space or punctuation).
Otherwise, TextWrangler matches the search string anywhere in the text.

Grep
When this checkbox is selected, TextWrangler treats the search and replace strings as grep
patterns. Otherwise, TextWrangler searches the document for text that matches the search
string as it appears literally, and will replace any matched text with the replace string. To
learn more about pattern searching see “Searching with Grep” on page 135.

Selected Text Only
When this checkbox is selected, TextWrangler searches only the selected text. Otherwise,
TextWrangler searches the entire document.

Wrap Around
When this checkbox is selected, TextWrangler continues searching from the beginning of
the document if a match is not found (or from the end of the document if searching
backwards). Otherwise, TextWrangler stops searching when it reaches the end (or the
beginning if searching backwards) of the file.

Special Characters
You can use the following special characters to search for line breaks and other non-
printing characters, as well as hexadecimal escapes to search for any desired 8-bit
character.

Replace to End Replaces every occurrence of the search string
from the current insertion point to the end of
the document with the replace string.

Replace & Find
Again

Replaces the selection with the replace string
and looks for the search string again.

Character Matches…

\r line break (carriage return)

\n Unix line break (line feed)

\t tab

This command… Does this…
118 Chapter 7: Searching

The form of a hex escape is “\xNN”, where “N” is any single hex digit [0-9,A-F]. The “x”
may be upper or lower case. (You can use the ASCII Table in the Window menu to find the
hex value for any 8-bit Macintosh character.) You can perform a literal search for any
character, including a null, using this option. Malformed escapes are treated as literal
strings.

Multi-File Searching
The main difference between single-file searching and multi-file searching is that to
perform a multi-file search, you must specify the files to be searched. TextWrangler gives
you a great deal of flexibility in how to do this. You can search all the files in a given folder,
in open editing windows, or in an existing search results browser. For even greater control,
you can select a diverse set of search sources, or apply TextWrangler’s advanced file
filtering capabilities.

When you start a search, TextWrangler will display a search progress window and return
control, so that you can continue working. You can perform more than one multi-file
searches at a time; each search will have its own progress window. Closing a search’s
progress window or clicking Cancel in the progress window will stop the operation, and
TextWrangler will display a search results browser containing any matches found up to that
point.

\f page break (form feed)

\xNN hexadecimal character code NN (for example,
\x0D for CR)

\x{NNNN} any number of hexadecimal characters NN…
(for example, \x{0} will match a null, \x{304F}
will match a Japanese Unicode character)

\\ backslash (\)

Character Matches…
Multi-File Searching 119

Starting a Search
To search for a string in multiple files, do the following steps:

1 Choose Multi-File Search from the Search menu, or type Command-Shift-F, to open the
Multi-File Search window (if it is not already open).

2 Type the string you are looking for in the Find text field.

3 Type the replace string (if any) in the Replace text field.

Be sure to read the section “Multi-File Replacing” later in this chapter if you want to
perform replace operations.

4 Turn on any search options that you want to apply to your search.

To learn more about these options, see “Search Settings” earlier in this chapter.

5 Drag a folder to the search target area to search its contents, or select any of the available
search sources in the Sources list to specify the set of files to search.

 See “Specifying the Search Set” later in this chapter for more information.

6 Click one of the buttons along the right side of the dialog box to begin the search.
120 Chapter 7: Searching

The table below tells you what each of the buttons does.

Find All and Multi-File Search Results
When you perform a Find All search, either on a single file or across multiple files,
TextWrangler will open a search results browser which lists every occurrence of the search
string in the selected file(s)

The information at the top of the window tells you how many matches TextWrangler found
in the set of files you specified, as well as specifying whether there were any error
conditions or warnings generated during the search. You can display or hide any
combination of errors, warnings, and matches, by checking the appropriate options.

This button… Does this…

Find All Finds all occurrences of the search string in all the
files in the selected search sources. TextWrangler
displays the results in a search results browser.

Replace All Finds all occurrences of the search string in all the
files in the selected search sources and replaces
them with the replace string.

Options Brings up the Search Options sheet.

Save Set Creates an entry under the “Saved Search Sets”
heading in the search sources list which you can
later choose to reselect the same search sources.

Other Select arbitrary file(s) or folder(s) to add to the
search sources.
Multi-File Searching 121

The middle panel lists each line that contains the matched text. Every match is identified by
file name and line number. You can toggle between the standard Finder-style hierarchical
list, where each match in a file is listed under the file’s name, or a flat list where each
occurrence is displayed in order, by pressing the File List button next to the Open button.

Click any match in the list of occurrences to have TextWrangler display the part of the file
that contains the match in the text pane.

IMPORTANT You can edit text directly within a search results browser, or double-click any line that
contains a match to open the corresponding file at the point of the match.

After you have opened a file, you can use the Find Again, Replace, Replace All, and
Replace & Find Again commands in the Search menu to continue searching it, as if you had
chosen a File by File search. See the next section for information on File by File searching.

Note You can use a search results window as the basis of another multi-file search. See
“Specifying the Search Set” below.

Specifying the Search Set
To specify which files and folders TextWrangler should examine when performing a multi-
file search, just select items from the Search In list of the Multi-File Search window.

 You can choose multiple sources for a multi-file search, and you can mix different types of
sources. Available sources include:

• specified individual files

• the files in any selected or recently-searched folder
122 Chapter 7: Searching

• open text documents

• the files listed in any search results browser or compile errors browser

• the files and folders contained within any Zip archives

• any “Smart Folders” which you have saved in the Finder (TextWrangler
will automatically list any such items present in the “Saved Searches”
folder for your login account)

To add a file, folder, or other suitable item to the Search In list, click Other in the
Multi-File Search window, and choose the item using the resulting selection
sheet. (You can select multiple items to be added.)

To designate any item in the list as a search source, click on the box next to its
name, or double-click on the name, to add a checkmark. To deselect a search
source, click the box next to its name, or double-click its name, to turn off the
checkmark. To select a single source only, and deselect all other sources,
Command-click on the checkbox next to the desired source’s name. To remove a
search source from the list, click on the minus sign (–) to the right of its name.
(Doing so removes only the entry from the list, not the original item.)

TextWrangler will display a summary of the selected sources in the information
box at the bottom of the Multi-File Search window. Here are some common
scenarios.

Searching the files in a folder
To search the files in a folder, click on the box next to the folder’s name, or
double-click its name, in the Sources list. If the folder you want to search is not in
the Sources list, click the Other button at the right of the dialog and pick the
folder using the resulting selection sheet.

You can also drag a folder from the Finder directly into the search items box of
the Find & Replace dialog to choose it as the source.

Note The Choose a Folder dialog will display any packages it encounters as folders
(rather than just as single files, the way they appear in the Finder). This
allows you to navigate their internal structure just as you would any other
folder. Similarly, you can drag a package from the Finder into the path box in
the Find & Replace dialog and it will be treated as a true folder rather than as
a single file.

Searching all open documents
You can choose any or all open text documents as search sources. This option
allows you to search documents that have not yet been saved to a file, or which
contain unsaved changes. To choose all open documents, click the box next to the
Open Text Documents item, or double-click on the item in the list.

Searching the contents of compressed archives
You can control whether TextWrangler should search within the contents of
compressed archives (“.bz2”, “.gz”, and “.zip”) via the “Search compressed files”
option in the Multi-File Search window's “Options” sheet. When this option is
off, TextWrangler will skip all bz2, gz, and Zip while searching, even if they may
contain compressed text files.
Multi-File Searching 123

Searching the files contained in a results browser
If a previous multi-file search found many files that contain your search string, you may
want to narrow the search. To search the files listed in any results browser window, click
the box next to that browser’s name, or double-click on its name, in the Sources list. You
can also click the box next to the Results Browsers item, or double-click on this item, to
search the files listed in all results browsers.

Saved Search Sources
You can use the Saved Search Sources popup menu to store specific sets of search sources
for later reuse. To save a set of search sources, choose Remember this Set from the popup
menu and give the set a name in the resulting dialog. To select a saved set of search
sources, choose that set’s name from the pop-menu.

Multi-File Search Options
Click the Options button to display the search options sheet.

To search the contents of all subfolders within the folders you choose, select the Search
Nested Folders option in the resulting sheet. You can also choose to skip any folders whose
names are enclosed in parentheses here by selecting the Skip (…) Folders option, or
whether to search the contents of invisible folders by selecting the Search Invisible Folders
option.

You can also choose to search only text files or to search all file types. If you have image
files or other non-text files in search source folders, it may be a good idea to restrict the
search to only text files. This setting is applied in addition to any file filter (see next
section) and in fact takes effect before the filter.

To find only files whose contents do not contain the search string, select the Exclude
Matches option.

You can further restrict which files from the chosen sources will be searched by applying a
file filter. See “File Filters” (below) for more details.

File Filters
If you do not want to search every file in the set you selected, but want to include only
those that meet certain criteria (such as those created on a certain date, or only those created
by TextWrangler and not some other program, or those that are HTML or Perl documents),
you can use a file filter.
124 Chapter 7: Searching

To apply a file filter, just choose it from the Filters popup menu in the Multi-File Search
window. If none of the available filters meets your needs, you can define a new one, or
create a temporary filter.

New Filter
To define a new saved file filter, select New… from the popup menu. TextWrangler will
ask you for a filter name, and then display the Edit Filter dialog (below). You can also
define new file filters in the Filters panel of the Setup window (see page 191).

Note If the Setup window is open, any filters you define in the Multi-File Search window will
not be available in the Filters panel of the Setup window until you close and reopen
the Setup window.

The Edit Filter dialog lets you specify multiple criteria that determine whether a given file
is selected by the filter. You can choose whether these criteria are exclusive (that is,
whether a file must meet every listed test to be selected) or inclusive (that is, whether a file
that meets any of the tests is selected) using the Every (AND) and Any (OR) radio buttons
at the top of the dialog.

To add a test, click the Add (+) button, and a new row will appear in the dialog.

Within each row (criterion), the left-hand popup lets you specify which attribute of a file
you wish to test. TextWrangler lets you test a file’s name, the name of its enclosing folder,
its creator or type, its creation and modification date (or both date and time), or its Finder
label, visibility, or the programming or markup language it is written in. You can also test
the content of a file, using the “Contents” criterion.

The center popup lets you choose the test to be applied to the selected attribute. The
available options here change depending on what attribute you selected. If you choose
Visibility in the first column, for instance, your only choices are whether the file is or is not
visible, However, if you choose File Name in the first column, the middle column lets you
test to see if the name does or does not exactly match, contain, begin with, or end with a
particular string. You can also test file names to see if they match wildcard or Grep
patterns.

Note In wildcard patterns, the asterisk (*) and question mark (?) characters have special
meanings. The asterisk matches any number of characters, such that “*.c” matches
any file whose name ends with “.c”. The question mark matches a single character, so
that “foo?” matches “food”, fool”, “foot”, and many other words. Both the asterisk and
the question mark can be used anywhere in a wildcard pattern, and any number of
either can be used in a single pattern.

Grep patterns, also known as regular expressions, are a powerful method of selecting
file names based on classes of text or repeating text. They are covered in great detail
in the next chapter.
Multi-File Searching 125

The right-hand text field specifies the match criterion. For example, when filtering by File
Name, you type the text you want the name to match, contain, begin with, or end with (or
not). When filtering by Language, you choose a supported language from a popup menu.

Specifying Time and Date Criteria
When using a time or date criterion, you can use the special words below to specify dates
and times relative to the current date and time.

You can add any number of criteria using the Add (+) button. To delete any criterion, click
the Remove (-) button next to it.

Click Save to save the file filter and use it for this search. TextWrangler will ask you to
name the filter, and it will then appear in the Filters popup menu in the Find & Replace
dialog (and in the Filter panel of the Setup window). Click Cancel to discard any changes
you have made to the filter. (Hold the Option key when you click Cancel to skip the
confirmation alert.)

Filtering by Name
In order to provide the greatest possible flexibility, TextWrangler offers several different
criteria for filtering based on file names

File Name: Tests the complete string corresponding to the file name.

File Name Root: Tests only the “root” portion of the file name. Given a name of the form
“foo.txt”, the root is the string which occurs before the period, in this case “foo”.

File Name Suffix: Tests only the file name suffix. In the above example, the suffix is “txt”.
Note that the suffix does not include the period.

Temporary Filters
Choose “(current criteria)” from the popup menu in the Find & Replace dialog to reuse the
last set of criteria applied (either from using a saved filter, or from using the Edit button to
define criteria). Thus, you can use filter criteria on the fly, without the need to create and
store a throwaway filter.

Editing and Deleting Filters
To edit a file filter you have already defined, choose it from the Filters popup menu, change
it as desired, and click Save. Since each filter must have a unique name, saving it will
replace the old version of the filter. To delete a filter entirely, visit the Filters panel of the
Setup window. (You can also create or modify filters there.)

Word Means…

now current date and time

today midnight on the current date

yesterda
y

current date and time minus 24
hours

tomorro
w

current date and time plus 24
hours
126 Chapter 7: Searching

Searching SCM Directories
When scanning folders for various purposes (multi-file search, Find Differences, and other
batch operations), TextWrangler ignores all directories which contain administrative data
for source-control management (SCM) tools: CVS, .svn, .git, .hg, .bzr. This behavior
prevents any inadvertent modifications to such data which might otherwise occurs during a
multi-file search or other batch operation. If you must search the contents of such
directories, you can enable TextWrangler to do so by issuing the following Terminal
command:
defaults write com.barebones.textwrangler
SkipSCMAdminDirsWhenScanningFolders -bool NO

Note The “Search Invisible Folders” option no longer enables TextWrangler to search within
such directories.

Multi-File Replacing
If you want to replace only some occurrences of text in multiple files, you can simply
search those files, select the instances you want to change in the search results browser to
open the files to those points, and perform the replacements individually. However,
TextWrangler can also change all occurrences of a string in a group of files with one
command.

Globally replacing text in more than one file works the same as replacing it in a single file.
The only possible complication is that, if you make a mistake, it can have much wider
consequences. If you are not sure what effect a replace operation will have, test it out on a
few sample files (or a copy of your data) first!

To do a multi-file search and replace, replacing all occurrences:

1 Enter your desired find and replace strings in the Multi-File Search window as described
in the section “Multi-File Search.”

2 Choose the files to be searched as described in “Specifying the Search Set”.

3 To start the operation, click Replace All in the Multi-File Search window, choose the
Replace All command, or type its key equivalent of Command-Option-R.

 TextWrangler displays the Find & Replace All Matches dialog box:
Multi-File Replacing 127

 This is what each of its options does:

Live Search
The Live Search command performs an incremental search. In other words, it shows the
matching text as you type the search string, so you only have to type until you find the text
you want.

Live Search always searches in the text view of the frontmost window; if that window has
no text view, the Live Search command will be disabled.

To use Live Search:

1 Choose Live Search from the Search menu, or type Command-Option-F.

2 Type the string you are looking for into the Live Search field.

As you type, TextWrangler selects the first occurrence of what you have typed so far.

3 To find the next occurrence of the matching text, click the Next (right) arrow, or type
Return or Enter.

4 To find the previous occurrence of the matching text, click the Previous (left) arrow, or
type Shift-Return or Shift-Enter.

This option… Replaces all occurrences of the search
string with the replace string and…

Leave Open Leaves all the files open so that you can inspect the
replacements.

If there are many files that contain the search
string, TextWrangler may run out of memory.

Save to Disk Saves each file with the changes.

When the Confirm Saves setting is active, you will
have an opportunity to approve the changes before
TextWrangler saves them to disk. You should not
turn this off unless you are sure that the replace
operation being done is what you want.

Show Results Opens a results browser listing each of the files
which was changed, and the number of changes in
each file.
128 Chapter 7: Searching

If Emacs key bindings are enabled, you can also type Control-S to start a Live Search, and
then type Control-S or Control-R to search forward or backward respectively.

To clear the most recent word of the search string, you can type Option-Delete, or click on
the “delete” button (the “X”) within the search field to delete the entire search string.

To cancel Live Search, you may click the “Done” button in the search bar or type the
Escape key.

Note The Live Search bar replaces the Quick Search window present in older versions.

Search Menu Reference
This section describes all of the commands in the Search menu.

Find
Opens the Find window (or the Find & Replace dialog). See “Basic Searching and
Replacing” on page 116.

Multi-File Search
Opens the Multi-File Search window. See “Multi-File Searching” on page 119 and “Multi-
File Replacing” on page 127.

Search in … (Disk or Results Browser)
If the frontmost window is an editing window, this command’s name will reflect the name
of the current document’s parent folder (if any).

If the frontmost window is a disk browser or results browser, this command's name will
reflect the name of the directory currently visible in the disk browser, or the name of the
results browser window.

Choosing this command will open the Multi-File Search window with the described target
(the current document’s parent folder, or the selected directory) set as the search source.

If the Multi-File Search window is frontmost, this command will target the disk browser or
results browser which is closest to the front (Z-order).

This command is also available in the Action (‘gear’) menu of disk browsers.

Live Search
Opens the Live Search bar. You can use this feature to interactively search for text strings,
as described in the previous section.
Search Menu Reference 129

Find Next/Previous
Searches the current document for the next occurrence of the search string. Hold down the
Shift key to find the previous occurrence.

Find All
Finds all instances of the search string in the current document or search set, and displays a
search results browser.

Find Selected Text/Previous Selected Text
Uses the selected text as the search string and finds the next occurrence of the selected text.
Hold down the Shift key to find the previous occurrence of the selected text.

When you invoke this command, TextWrangler will add the current search string to its
Search History list of recently-used search strings.

Tip You can also hold down the Option and Command keys as you double-click on a
selection to search for the next occurrence of the selected text.

Use Selection for Find
Sets TextWrangler’s search string to the currently selected text but does not perform a
search. When you invoke this command, TextWrangler will add the current search &
replace strings to its Search History list.

Use Selection for Find (grep)
When you hold down the Shift key, Use Selection for Find becomes Use Selection for Find
(grep). This command sets TextWrangler’s search string to the currently selected text and
turns on the Grep option, but does not perform a search. When you invoke this command,
TextWrangler will add the current search & replace strings to its Search History list.

Use Selection for Replace
Sets TextWrangler’s replace string to the currently selected text but does not perform a
search operation. When you invoke this command, TextWrangler will add the current
search & replace strings to its Search History list.

Use Selection for Replace (grep)
When you hold down the Shift key, Use Selection for Replace becomes Use Selection for
Replace (grep). This command sets TextWrangler’s replace string to the currently selected
text and turns on the Grep option, but does not perform a search operation. When you
invoke this command, TextWrangler will add the current search& replace strings to its
Search History list.

Replace
Replaces the selected text (usually an occurrence of the search string) with the replace
string.
130 Chapter 7: Searching

Replace All
Replaces all occurrences of the search string in a file with the replace string, or, starts a
multi-file search & replace operation.

Replace to End
Replaces each occurrence of the search string from the current insertion point (or the start
of the current selection range) to the end of the document.

Replace & Find Again
Replaces the selected text with the replace string and searches for the next occurrence of
the search string.

Go to Line
When you choose this command, TextWrangler opens the Go To Line dialog box. Type in a
line number and the frontmost text window will jump to display that line.

This command does not follow the usual convention of applying the last-used setting when
invoked with the Option key pressed. Instead, if you select a number within the current
document, then hold down the Option key and choose “Go to Line”, TextWrangler will go
to that numbered line.

Note The Go To Line command honors the “Use ‘Hard’ Line Numbering in Soft-Wrapped Text
Views” option in the Editing preference panel.

Go to Center Line
Will move the insertion point to the beginning of the middle or center line of the displayed
text.

Go to Previous/Next Error
If an error browser is open, this command will open the listed error which came before or
after the selected error. See Chapter 9 for more information on error browsers.

Go to Function Start/End
When you choose one of these commands, TextWrangler will move the insertion point to a
position immediately before the start or immediately after the end of the current function,
where a function is any item which appears on the function popup menu. If you anticipate
using these commands often, you may wish to assign them key equivalents in the Menus &
Shortcuts preference panel.

Go to Previous/Next Function
When you choose one of these commands, TextWrangler will select the name of the
previous or next function in the document, where a function is any item which appears on
the function popup menu. If you anticipate using these commands often, you may wish to
assign them key equivalents in the Menus & Shortcuts preference panel.
Search Menu Reference 131

Jump Back
When you choose this command, TextWrangler will go to the last selection you made in the
document which was outside the current view (an automatic jump mark), or the last
location you marked with the Set Jump Mark command (a manual jump mark--see below).

Jump Forward
When you choose this command after choosing Jump Back, TextWrangler will go to the
next later jump mark, or return to the most recent position of the insertion point. If you
have not jumped back to a jump mark, this command is disabled.

Set Jump Mark
Choose this command to define the current insertion point location or selection range as a
manual jump mark within the active document. You can navigate to jump marks using the
Jump Back and Jump Forward commands.

Find Differences
Finds the differences between two files, or all of the files contained in two folders. See
“Comparing Text Files” in Chapter 4 for more details.

Compare Two Front Documents
Performs a Find Differences on the two frontmost text documents, using the same settings
currently active for the Find Differences command.

Compare Against Disk File
Performs a Find Differences between the contents of the front document and the disk file
for that same document. This capability makes it easy to locate in-progress changes to a
document.

Apply to New
Applies the currently selected difference to the “New” version of two files which are being
compared. See “Comparing Text Files” for more details.

Apply to Old
Applies the currently selected difference to the “Old” version of two files which are being
compared. See “Comparing Text Files” for more details.

Compare Again
Find the differences between two files, using the same settings that were used in the last
time you used the Find Differences command. See “Comparing Text Files” for more
details.
132 Chapter 7: Searching

Find in Reference
Performs a search for the selected symbol using an appropriate language-specific online
resource. As for Find Definition, if there is no selection, TextWrangler will attempt to
determine the symbol name by inspection around the insertion point.

For example, Find in Reference in a PHP document will look up the selected symbol on
php.net; in a Ruby document, it will use the ‘ri’ interactive reference; in a Unix Shell
Script, it will open the appropriate Unix man page.

For languages which don’t have a pre-defined resources, lookups will performed on the
Apple Developer Connection web site.

You can modify the URL template which TextWrangler uses to perform the lookup for a
particular language by bringing up the Options sheet for that language in the Languages
preference panel and editing the template directly. In the template, use
“__SYMBOLNAME__” to indicate where the selected symbol name should be placed in
the lookup string.
Search Menu Reference 133

134 Chapter 7: Searching

C H A P T E R

8
Searching with Grep
This chapter describes the Grep option in TextWrangler’s Find command, which
allows you to find and change text that matches a set of conditions you specify.
Combined with the multi-file search and replace features described in Chapter 7,
TextWrangler’s grep capabilities can make many editing tasks quicker and easier,
whether you are modifying Web pages, extracting data from a file, or just
rearranging a phone list.

In this chapter
What Is Grep or Pattern Searching? . 136
Writing Search Patterns . 136

Most Characters Match Themselves – 136
Escaping Special Characters – 136
Wildcards Match Types of Characters – 138
Character Classes Match Sets or Ranges of Characters – 140
Matching Non-Printing Characters – 141
Other Special Character Classes – 142
Quantifiers Repeat Subpatterns – 143
Combining Patterns to Make Complex Patterns – 144
Creating Subpatterns – 144 • Using Backreferences in Subpatterns – 145
Using Alternation – 146 • The “Longest Match” Issue – 146
Non-Greedy Quantifiers – 147

Writing Replacement Patterns . 148
Subpatterns Make Replacement Powerful – 148
Using the Entire Matched Pattern – 148
Using Parts of the Matched Pattern – 149
Case Transformations – 150

Examples . 151
Matching Identifiers – 151 • Matching White Space – 151
Matching Delimited Strings – 152 • Marking Structured Text – 152
Marking a Mail Digest – 153 • Rearranging Name Lists – 153

Advanced Grep Topics . 153
Matching Nulls – 154 • Backreferences – 154
POSIX-Style Character Classes – 155
Non-Capturing Parentheses – 156
Perl-Style Pattern Extensions – 157 • Comments – 157
Pattern Modifiers – 158 • Positional Assertions – 159
Conditional Subpatterns – 161 • Once-Only Subpatterns – 162
Recursive Patterns – 164

Writing Search Patterns . 136
135

What Is Grep or Pattern Searching?
Grep patterns offer a powerful way to make changes to your data that “plain text” searches
simply cannot. For example, suppose you have a list of people’s names that you want to
alphabetize. If the names appear last name first, you can easily put these names in a
TextWrangler window and use the Sort tool. But if the list is arranged first name first, a
simple grep pattern can be used to put the names in the proper order for sorting.

A grep pattern, also known as a regular expression, describes the text that you are looking
for. For instance, a pattern can describe words that begin with C and end in l. A pattern like
this would match “Call”, “Cornwall”, and “Criminal” as well as hundreds of other words.

In fact, you have probably already used pattern searching without realizing it. The Find
window’s “Case sensitive” and “Entire word” options turn on special searching patterns.
Suppose that you are looking for “corn”. With the “Case sensitive” option turned off, you
are actually looking for a pattern that says: look for a C or c, O or o, R or r, and N or n. With
the “Entire word” option on, you are looking for the string “corn” only if it is surrounded
by white space or punctuation characters; special search characters, called metacharacters,
are added to the search string you specified to indicate this.

What makes pattern searching counterintuitive at first is how you describe the pattern.
Consider the first example above, where we want to search for text that begins with the
letter “C” and ends with the letter “l” with any number of letters in between. What exactly
do you put between them that means “any number of letters”? That is what this chapter is
all about.

Note Grep is the name of a frequently used Unix command that searches using regular
expressions, the same type of search pattern used by TextWrangler. For this reason,
you will often see regular expressions called “grep patterns,” as TextWrangler does.
They’re the same thing.

Writing Search Patterns
This section explains how to create search patterns using TextWrangler’s grep syntax. For
readers with prior experience, this is essentially like the syntax used for regular expressions
in the Perl programming language. (However, you do not need to understand anything
about Perl in order to make use of TextWrangler’s grep searching.)

Most Characters Match Themselves
Most characters that you type into the Find window match themselves. For instance, if you
are looking for the letter “t”, Grep stops and reports a match when it encounters a “t” in the
text. This idea is so obvious that it seems not worth mentioning, but the important thing to
remember is that these characters are search patterns. Very simple patterns, to be sure, but
patterns nonetheless.

Escaping Special Characters
In addition to the simple character matching discussed above, there are various special
characters that have different meanings when used in a grep pattern than in a normal
search. (The use of these characters is covered in the following sections.)
136 Chapter 8: Searching with Grep

However, sometimes you will need to include an exact, or literal, instance of these
characters in your grep pattern. In this case, you must use the backslash character \ before
that special character to have it be treated literally; this is known as “escaping” the special
character. To search for a backslash character itself, double it \\ so that its first appearance
will escape the second.

For example, perhaps the most common “special character” in grep is the dot: “.”. In grep,
a dot character will match any character except a return. But what if you only want to
match a literal dot? If you escape the dot: “\.”, it will only match another literal dot
character in your text.

So, most characters match themselves, and even the special characters will match
themselves if they are preceded by a backslash. TextWrangler’s grep syntax coloring helps
make this clear.

Note When passing grep patterns to TextWrangler via AppleScript, be aware that both the
backslash and double-quote characters have special meaning to AppleScript. In order
to pass these through correctly, you must escape them in your script. Thus, to pass \r
for a carriage return to TextWrangler, you must write \\r in your AppleScript string.
Writing Search Patterns 137

Wildcards Match Types of Characters
These special characters, or metacharacters, are used to match certain types of other
characters:

Being able to specifically match text starting at the beginning or end of a line is an
especially handy feature of grep. For example, if you wanted to find every instance of a
message sent by Patrick, from a log file which contains various other information like so:

From: Rich, server: barebones.com
To: TextWrangler-Talk, server: lists.barebones.com
From: Patrick, server: example.barebones.com

you could search for the pattern:

^From: Patrick

and you will find every occurrence of these lines in your file (or set of files if you do a
multi-file search instead).

It is important to note that ^ and $ do not actually match return characters. They match
zero-width positions after and before returns, respectively. So, if you are looking for “foo”
at the end of a line, the pattern “foo$” will match the three characters “f”, “o”, and “o”. If
you search for “foo\r”, you will match the same text, but the match will contain four
characters: “f”, “o”, “o”, and a return.

Note ^ and $ do not match the positions after and before soft line breaks.

You can combine ^ and $ within a pattern to force a match to constitute an entire line. For
example:

^foo$

will only match “foo” on a line by itself, with no other characters. Try it against these three
lines to see for yourself:

foobar
foo
fighting foo

The pattern will only match the second line.

Wildcard Matches…

. any character except a line break (that is, a carriage
return)

^ beginning of a line (unless used in a character class)

$ end of line (unless used in a character class)
138 Chapter 8: Searching with Grep

Other Positional Assertions
TextWrangler’s grep engine supports additional positional assertions, very similar to ^ and
$.

Examples (the text matched by the pattern is underlined)

Search for: \bfoo\b

Will match: bar foo bar

Will match: foo bar

Will not match: foobar

Search for: \bJane\b

Will match: Jane's

Will match: Tell Jane about the monkey.

Search for: \Afoo

Will match: foobar

Will not match: This is good foo.

Escape Matches

\A only at the beginning of the document (as
opposed to ^, which matches at the beginning
of the document and also at the beginning of
each line)

\b any word boundary, defined as any position
between a \w character and a \W character, in
either order

\B any position that is not a word boundary

\z at the end of the document (as opposed to $,
which matches at the end of the document and
also at the end of each line)

\Z at the end of the document, or before a trailing
return at the end of the doc, if there is one
Writing Search Patterns 139

Character Classes Match Sets or Ranges of
Characters
The character class construct lets you specify a set or a range of characters to match, or to
ignore. A character class is constructed by placing a pair of square brackets […] around the
group or range of characters you wish to include. To exclude, or ignore, all characters
specified by a character class, add a caret character ^ just after the opening bracket [^…].
For example:

You can use any number of characters or ranges between the brackets. Here are some
examples:

A character class matches when the search encounters any one of the characters in the
pattern. However, the contents of a set are only treated as separate characters, not as words.
For example, if your search pattern is [beans] and the text in the window is “lima beans”,
TextWrangler will report a match at the “a” of the word “lima”.

To include the character] in a set or a range, place it immediately after the opening bracket.
To use the ^ character, place it anywhere except immediately after the opening bracket. To
match a dash character (hyphen) in a range, place it at the beginning of the range; to match
it as part of a set, place it at the beginning or end of the set. Or, you can include any of these
character at any point in the class by escaping them with a backslash.

Character
Class Matches

[xyz] any one of the characters x, y,
z

[^xyz] any character except x, y, z

[a-z] any character in the range a to
z

Character Class Matches

[aeiou] any vowel

[^aeiou] any character that is not a vowel

[a-zA-Z0-9] any character from a-z, A-Z, or 0-9

[^aeiou0-9] any character that is neither a vowel nor a
digit

Character
Class Matches

[]0-9] any digit or]

[aeiou^] a vowel or ^

[-A-Z] a dash or A - Z
140 Chapter 8: Searching with Grep

Character classes respect the setting of the Case Sensitive checkbox in the Find window.
For example, if Case Sensitive is on, [a] will only match “a”; if Case Sensitive is off, [a]
will match both “a” and “A”.

Matching Non-Printing Characters
As described in Chapter 7 on searching, TextWrangler provides several special character
pairs that you can use to match common non-printing characters, as well as the ability to
specify any arbitrary character by means of its hexadecimal character code (escape code).
You can use these special characters in grep patterns as well as for normal searching.

For example, to look for a tab or a space, you would use the character class [\t] (consisting
of a tab special character and a space character).

Use \r to match a line break in the middle of a pattern and the special characters ^ and $
(described above) to “anchor” a pattern to the beginning of a line or to the end of a line. In
the case of ^ and $, the line break character is not included in the match.

[--A] any character in the range from - to
A

[aeiou-] any vowel or -

[aei\-ou] any vowel or -

Character Matches

\r line break (carriage return)

\n Unix line break (line feed)

\t tab

\f page break (form feed)

\a alarm (hex 07)

\cX a named control character, like \cC for Control-C

\b backspace (hex 08) (only in character classes)

\e Esc (hex 1B)

\xNN hexadecimal character code NN (for example,
\x0D for CR)

\x{NNNN} any number of hexadecimal characters NN… (for
example, \x{0} will match a null, \x{304F} will
match a Japanese Unicode character)

\\ backslash

Character
Class Matches
Writing Search Patterns 141

Other Special Character Classes
TextWrangler uses several other sequences for matching different types or categories of
characters.

A “word” is defined in TextWrangler as any run of non-word-break characters bounded by
word breaks. Word characters are generally alphanumeric, and some characters whose
value is greater than 127 are also considered word characters.

Note that any character matched by \s is by definition not a word character; thus, anything
matched by \s will also be matched by \W (but not the reverse!).

Special
Character Matches

\s any whitespace character (space, tab, carriage
return, line feed, form feed)

\S any non-whitespace character (any character
not included by \s)

\w any word character (a-z, A-Z, 0-9, _, and some
8-bit characters)

\W any non-word character (all characters not
included by \w, including carriage returns)

\d any digit (0-9)

\D any non-digit character (including carriage
return)
142 Chapter 8: Searching with Grep

Quantifiers Repeat Subpatterns
The special characters *, +, and ? specify how many times the pattern preceding them may
repeat. {}-style quantifiers allow you to specify exactly how many times a subpattern can
repeat. The preceding pattern can be a literal character, a wildcard character, a character
class, or a special character.

Note that the repetition characters * and ? match zero or more occurrences of the pattern.
That means that they will always succeed, because there will always be at least zero
occurrences of any pattern, but that they will not necessarily select any text (if no
occurrences of the preceding pattern are present).

For this reason, when you are trying to match more than one occurrence, it is usually better
to use a + than a *, because + requires a match, whereas * can match the empty string. Only
use * when you are sure that you really mean “zero or more times,” not just “more than
once.”

Try the following examples to see how their behavior matches what you expect:

Pattern Matches

p* zero or more p’s

p+ one or more p’s

p? zero or one p’s

p{COUNT} match exactly COUNT p’s, where COUNT is an
integer

p{MIN,} match at least MIN p’s, where MIN is an integer

p{MIN, MAX} match at least MIN p’s, but no more than MAX

Pattern Text Matches

.* Fourscore and seven
years

Fourscore and seven
years

[0-9]+ I’ve been a loyal member
since 1983 or so.

1983

\d+ I’ve got 12 years on him. 12

A+ BAAAAAAAB AAAAAAA

A{3} BAAAAB AAA (first three A’s)

A{3,} BAAAAB AAAA

A{1,3} BAAAAB AAA on the first match,
the remaining A on the
second match

c?andy andy likes candy “andy” on the first match,
“candy” on the second
Writing Search Patterns 143

Combining Patterns to Make Complex
Patterns
So far, the patterns you have seen match a single character or the repetition of a single
character or class of characters. This is very useful when you are looking for runs of digits
or single letters, but often that is not enough.

However, by combining these patterns, you can search for more complex items. As it
happens, you are already familiar with combining patterns. Remember the section at
beginning of this discussion that said that each individual character is a pattern that
matches itself? When you search for a word, you are already combining basic patterns.

You can combine any of the preceding grep patterns in the same way. Here are some
examples.

Note again in these examples how the characters that have special meaning to grep are
preceded by a backslash (\+, \., and \$) when we want them to match themselves.

Creating Subpatterns
Subpatterns provide a means of organizing or grouping complex grep patterns. This is
primarily important for two reasons: for limiting the scope of the alternation operator
(which otherwise creates an alternation of everything to its left and right), and for changing
the matched text when performing replacements.

A subpattern consists of any simple or complex pattern, enclosed in a pair of parentheses.
You can optionally specify a simple string to identify a subpattern, making it a named
subpattern.

A+ Ted joined AAA yesterday “AAA” on the first match;
“a” from “yesterday” on
the second

Pattern Matches Examples

\d+\+\d+ a string of digits, followed
by a literal plus sign,
followed by more digits

4+2
1234+5829

\d{4}[\t]B\.C\. four digits, followed by a
tab or a space, followed by
the string B.C.

2152 B.C.

\$?[0-9,]+\.\d* an optional dollar sign,
followed by one or more
digits and commas,
followed by a period, then
zero or more digits

1,234.56
$4,296,459.1
9
$3,5,6,4.0000
0. (oops!)

Pattern Matches

(p) the pattern p and remembers it

Pattern Text Matches
144 Chapter 8: Searching with Grep

You can combine more than one subpattern into a grep pattern, or mix subpatterns and
other pattern elements as you need.

Taking the last set of examples, you could modify these to use subpatterns wherever actual
data appears:

Using Backreferences in Subpatterns
What if we wanted to match a series of digits, followed by a plus sign, followed by the
exact same series of digits as on the left side of the plus? In other words, we want to match
“1234+1234” or “7+7”, but not “5432+1984”.

Using grouping parentheses, you can do this by referring to a backreference, also known as
a captured subpattern. There are two kinds of backreferences: numbered backreferences,
and named backreferences. You can use both types of backreference within the same grep
pattern.

Each subpattern within the complete pattern is numbered from left to right, starting with the
opening parenthesis. Later in the pattern, you can refer to the text matched within any of
these subpatterns by using a backslash followed by the number of that subpattern; this is a
numbered backreference. Unlike numbered backreferences, which are automatically
identified from the pattern, named backreferences are only available after you define them.

Names may include alphanumeric characters and underscores, and must be unique within a
pattern.

(?P<NAME>p) the pattern p and remembers it by the
specified string NAME

Pattern Matches Examples

(\d+)\+(\d+) a string of digits, followed
by a plus sign, followed
by more digits

4+2
1234+5829

(\d{4})[\t]B\.C\. four digits, followed by a
tab or a space, followed
by the string B.C.

2152 B.C.

\$?([0-9,]+)\.(\d*) an optional dollar sign,
followed by one or more
digits and commas,
followed by a period, then
zero or more digits

1,234.56
$4,296,459.1
9
$3,5,6,4.0000
0.

Pattern Matches…

\1, \2, …,
\99

the text of the nth subpattern in the entire
search pattern

(?P=NAME) the text of the subpattern NAME

Pattern Matches
Writing Search Patterns 145

Here are some examples of numbered backreferences:

We will revisit subpatterns in the section on replacement, where you will see how the
choice of subpatterns affects the changes you can make.

Using Alternation
The alternation operator | allows you to match any of several patterns at a given point. To
use this operator, place it between one or more patterns x|y to match either x or y.

As with all of the preceding options, you can combine alternation with other pattern
elements to handle more complex searches.

The “Longest Match” Issue
IMPORTANT When creating complex patterns, you should bear in mind that the quantifiers +, *, ? and {}

are “greedy.” That is, they will always make the longest possible match possible to a given
pattern, so if your pattern is E+ (one or more E’s) and your text contains “EEEE”, the
pattern matches all the E’s at once, not just the first one. This is usually what you want, but
not always.

Pattern Matches Examples

(\d+)\+\1 a string of digits, followed
by a plus sign, followed
the same digits

7+7
1234+1234

(\w+)\s+\1 double words, or, a pair of
identical character runs
separated by whitespace

the the
tire return
(oops!)

(\w)(\w)\2\1 a word character, a
second word character,
followed by the second
one again and the first
one again

abba

Pattern Text is… Matches…

a|t A cat each “a” and “t”

a|c|t A cat each “a”, “c”, and “t”

a (cat|dog)
is

A cat is here. A dog is
here. A giraffe is here.

“A cat is”, “A dog is”

A|b+ Abba “A”, “bb”, and “a”

Andy|Ted Andy and Ted joined
AAA yesterday

“Andy” and “Ted”

\d{4}|years I’ve been a loyal
member since 1983,
almost 16 years ago.

“1983”, “years”

[a-z]+|\d+ That’s almost 16
years.

“That”, “s”, “almost”,
“16”, “years”
146 Chapter 8: Searching with Grep

Suppose, for instance, that you want to match an HTML tag. At first, you may think that a
good way to do this would be to search for the pattern:

<.+>

consisting of a less-than sign, followed by one or more occurrences of a single character,
followed by a greater-than sign. To understand why this may not work the way you think it
should, consider the following sample text to be searched:

This text is in boldface.

The intent was to write a pattern that would match both of the HTML tags separately. Let’s
see what actually happens. The < character at the beginning of this line matches the
beginning of the pattern. The next character in the pattern is . which matches any character
(except a line break), modified with the + quantifier, taken together, this combination
means one or more repetitions of any character. That, of course, takes care of the B. The
problem is that the next > is also “any character” and that it also qualifies as “one or more
repetitions.” In fact, all of the text up to the end of the line qualifies as “one or more
repetitions of any character” (the line break does not qualify, so grep stops there). After
grep has reached the line break, it has exhausted the + operator, so it backs up and sees if it
can find a match for >. Lo and behold, it can: the last character is a greater-than symbol.
Success!

In other words, the pattern matches our entire sample line at once, not the two separate
HTML tags in it as we intended. More generally, the pattern matches all the text in a given
line or paragraph from the first < to the last >. The pattern only does what we intended
when there is only one HTML tag in a line or paragraph. This is what we meant when we
say that the regular quantifiers try to make the longest possible match.

Non-Greedy Quantifiers
IMPORTANT To work around this “longest match” behavior, you can modify your pattern to take

advantage of non-greedy quantifiers.

Astute readers will note that these non-greedy quantifiers correspond exactly to their
normal (greedy) counterparts, appended with a question mark.

Revisiting our problem of matching HTML tags, for example, we can search for:

<.+?>

Quantifier Matches…

+? one or more

*? zero or more

?? zero or one

{COUNT}? match exactly COUNT times

{MIN,}? match at least MIN times

{MIN, MAX}? match at least MIN times, but no more than
MAX
Writing Search Patterns 147

This matches an opening bracket, followed by one or more occurrences of any character
other than a return, followed by a closing bracket. The non-greedy quantifier achieves the
results we want, preventing TextWrangler from “overrunning” the closing angle bracket
and matching across several tags.

A slightly more complicated example: how could you write a pattern that matches all text
between and HTML tags? Consider the sample text below:

Welcome to the home of TextWrangler!

As before, you might be tempted to write:

.*

but for the same reasons as before, this will match the entire line of text. The solution is
similar; we will use the non-greedy *? quantifier:

.*?

Writing Replacement Patterns

Subpatterns Make Replacement Powerful
We covered subpatterns earlier when discussing search patterns and discussed how the
parentheses can be used to limit the scope of the alternation operator. Another reason for
employing subpatterns in your grep searches is to provide a powerful and flexible way to
change or reuse found information as part of a search-and-replace operation. If you do not
use subpatterns, you can still access the complete results of the search with the &
metacharacter. However, this precludes reorganizing the matched data as it is replaced.

Note TextWrangler will remember up to 99 backreferenced subpatterns. Versions prior to
6.5 were limited to 9 subpatterns.

Using the Entire Matched Pattern
The & character is useful when you want to use the entire matched string as the basis of a
replacement. Suppose that in your text every instance of product names that begin with the
company name “ACME” needs to end with a trademark symbol (™). The following search
pattern finds two-word combinations that begin with “ACME”:

ACME [A-Za-z]+

The following replacement string adds the trademark symbol to the matched text:

&™

Pattern Inserts…

& the text matched by the entire search pattern

\1, \2, …,
\99

the text matched by the nth subpattern of the
entire search pattern

\P<NAME> the text matched by the subpattern NAME
148 Chapter 8: Searching with Grep

For example, if you start with

ACME Magnets, ACME Anvils, and ACME TNT are all premium
products.

and perform a replace operation with the above patterns, you will get:

ACME Magnets™, ACME Anvils™, and ACME TNT™ are all premium
products.

Using Parts of the Matched Pattern
While using the entire matched pattern in a replacement string is useful, it is often more
useful to use only a portion of the matched pattern and to rearrange the parts in the
replacement string.

For example, suppose a source file contains C-style declarations of this type:

#define Util_Menu 284
#define Tool_Menu 295

and you want to convert them so they look like this, Pascal-style:

const int Util_Menu = 284;
const int Tool_Menu = 295;

The pattern to find the original text is straightforward:

#define[\t]+.+[\t]+\d+[^0-9]*$

This pattern matches the word “#define” followed by one or more tabs or spaces, followed
by one or more characters of any type, followed by one or more tabs or spaces, followed by
one or more digits, followed by zero or more characters that are not digits (to allow for
comments), followed by the end of the line.

The problem with this pattern is that it matches the entire line. It does not provide a way to
remember the individual parts of the found string.

If you use subpatterns to rewrite the above search pattern slightly, you get this:

#define[\t]+(.+)[\t]+(\d+)[^0-9]*$

The first set of parentheses defines a subpattern which remembers the name of the constant.
The second set remembers the value of the constant.

The replacement string would look like this:

const int \1 = \2;

The sequence \1 is replaced by the name of the constant (the first subpattern from the
search pattern), and the sequence \2 is replaced by the value of the constant (from the
second subpattern).

Our example throws out any comment that may follow the C-style constant declaration. As
an exercise, try rewriting the search and replace patterns so they preserve the comment,
enclosing it in (*…*) style Pascal comment markers.
Writing Replacement Patterns 149

Here are some more examples:

Case Transformations
Replace patterns can also change the case of the original text when using subpattern
replacements. The syntax is similar to Perl’s, specifically:

Here are some examples to illustrate how case transformations can be used.

Given some text:

mumbo-jumbo

and the search pattern:

(\w+)(\W)(\w+)

the following replace patterns will produce the following output:

\U\1\E\2\3 MUMBO-jumbo
\u\1\2\u\3 Mumbo-Jumbo

Note that case transformations also affect literal strings in the replace pattern:

\U\1\2fred MUMBO-FRED
\lMUMBLE\2\3 mUMBLE-jumbo

Data Search for Replace Result

4+2 (\d+)\+(\d+) \2+\1 2+4

1234+5829 (\d+)\+(\d+) \1+\1 1234+1234

2152 B.C. (\d{4})[\t]B\.C\. \1 A.D. 2152 A.D.

1,234.56 \$?([0-
9,]+)\.(\d+)

\1 dollars and
\2 cents

1,234 dollars
and 56 cents

$4,296,459.19 \$?([0-
9,]+)\.(\d+)

\1 dollars and
\2 cents

4,296,459
dollars and 19
cents

$3,5,6,4.00000 \$?([0-
9,]+)\.(\d+)

\1 dollars and
\2 cents

3,5,6,4 dollars
and 00000
cents

Modifier Effect

\u Make the next character uppercase

\U Make all following characters uppercase until
reaching another case specifier (\u, \L, \l) or \E

\l Make the next character lowercase

\L Make all following characters lowercase until
reaching another case specifier (\u, \U, \l) or \E

\E End case transformation opened by \U or \L
150 Chapter 8: Searching with Grep

Finally, note that \E is not necessary to close off a modifier; if another modifier appears
before an \E is encountered, that modifier will take effect immediately:

\Ufred-\uwilma FRED-Wilma

Examples
The example patterns in this section describe some common character classes and shortcuts
used for constructing grep patterns, and addresses some common tasks that you might find
useful in your work.

Matching Identifiers
One of the most common things you will use grep patterns for is to find and modify
identifiers, such as variables in computer source code or object names in HTML source
documents. To match an arbitrary identifier in most programming languages, you might use
this search pattern:

[a-z][a-zA-Z0-9]*

This pattern matches any sequence that begins with a lowercase letter and is followed by
zero or more alphanumeric characters. If other characters are allowed in the identifier, add
them to the pattern. This pattern allows underscores in only the first character of the
identifier:

[a-z_][a-zA-Z0-9]*

The following pattern allows underscores anywhere but the first character, but allows
identifiers to begin with an uppercase or lowercase letter:

[a-zA-Z][a-zA-Z0-9_]*

Matching White Space
Often you will want to match two sequences of data that are separated by tabs or spaces,
whether to simply identify them, or to rearrange them.

For example, suppose you have a list of formatted label-data pairs like this:

User name: Bernard Rubble
Occupation: Actor
Spouse: Betty

You can see that there are tabs or spaces between the labels on the left and the data on the
right, but you have no way of knowing how many spaces or tabs there will be on any given
line. Here is a character class that means “match one or more white space characters.”

[\t]+

So, if you wanted to transform the list above to look like this:

User name("Bernard Rubble")
Occupation("Actor")
Spouse("Betty")
Examples 151

You would use this search pattern:

([a-z]+):[\t]+([a-z]+)

and this replacement pattern:

\1\("\2"\)

Matching Delimited Strings
In some cases, you may want to match all the text that appears between a pair of delimiters.
One way to do this is to bracket the search pattern with the delimiters, like this:

".*"

This works well if you have only one delimited string on the line. But suppose the line
looked like this:

"apples", "oranges, kiwis, mangos", "penguins"

The search string above would match the entire line. (This is another instance of the
“longest match” behavior of TextWrangler’s grep engine, which was discussed previously.)

Once again, non-greedy quantifiers come to the rescue. The following pattern will match "-
delimited strings:

".+?"

Marking Structured Text
Suppose you are reading a long text document that does not have a table of contents, but
you notice that all the sections are numbered like this:

3.2.7 Prehistoric Cartoon Communities
5.19.001 Restaurants of the Mesozoic

You can use a grep pattern to create marks for these headings, which will appear in the
Mark popup menu. Choose Find & Mark All from the Mark popup menu in the navigation
bar. Then, decide how many levels you want to mark. In this example, the headings always
have at least two digits and at most four.

Use this pattern to find the headings:

^(\d+\.\d+\.?\d*\.?\d*)[\t]+([a-z]+)

and this pattern to make the file marks:

\1 \2

The ^ before the first search group ensures that TextWrangler matches the numeric string at
the beginning of a line. The pattern

\.?\d*

matches a (possible) decimal point and a digit sequence. The other groups use the white
space idiom and the identifier idiom. You can use a similar technique to mark any section
that has a section mark that can be described with grep.
152 Chapter 8: Searching with Grep

Marking a Mail Digest
You can elaborate the structured text technique to create markers for mail digests. Assume
that each digest is separated by the following lines:

From: Sadie Burke <sadie@burke.com>
Date: Sun, 16 Jul 1995 13:17:45 -0700
Subject: Fishing with the judge

Suppose you want the marker text to list the subject and the sender. You would use the
following search string:

^From:[\t]+(.*)\r.*\rSubject:[\t]+(.*)

And mark the text with this replacement string:

\2 \1

Note that for the sequence \r.*\r in the middle of the search string, the \r before “Subject” is
necessary because as previously discussed, the special character . does not match carriage
returns. (At least, not by default. See “Advanced Topics,” below, for details on how to
make dot match any character, including carriage returns.)

Rearranging Name Lists
You can use grep patterns to transform a list of names in first name first form to last name
first order (for a later sorting, for instance). Assume that the names are in the form:

Junior X. Potter
Jill Safai
Dylan Schuyler Goode
Walter Wang

If you use this search pattern:

^(.*) ([^]+)$

And this replacement string:

\2, \1

The transformed list becomes:

Potter, Junior X.
Safai, Jill
Goode, Dylan Schuyler
Wang, Walter

Advanced Grep Topics
TextWrangler’s PCRE-based grep engine offers unparalleled syntactical power. The topics
below cover areas that show how grep can effectively match very complicated patterns of
textTextWrangler. However, with this power comes complexity.
Advanced Grep Topics 153

If you are new to grep, it is possible that the topics covered in this section will not make
much sense to you. That’s OK. The best way to learn grep is to use it in real life, not by
reading example patterns. In many cases, the basic grep syntax covered previously in this
chapter will be all that you need.

If you are an experienced user of grep, however, many of the topics covered below will be
of great interest.

Matching Nulls
The grep engine used in much older versions of TextWrangler (prior to 2.0) was unable to
search text that contained null characters (ASCII value zero), but this limitation has since
been removed. Here’s one way to match a null:

\x{0}

Backreferences
The following charts explain the rules TextWrangler uses for determining backreferences.

In Search Patterns

Modifier Effect

\0 A backslash followed by a zero is an octal character
reference. Up to two further octal characters are read. Thus,
“\040” will match a space character, and “\07” will match the
ASCII BEL (\x07), but “\08” will match an ASCII null
followed by the digit 8 (because octal characters only range
from 0-7).

\1-9 A backslash followed by a single decimal digit from 1 to 9 is
always a backreference to the Nth captured subpattern.

\10-99 A backslash followed by two decimal digits, which taken
together form the integer N (ranging from 10 to 99), is a
backreference to the Nth captured subpattern, if there exist
N capturing sets of parentheses in the pattern. If there are
fewer than N captured subpatterns, the grep engine will
instead look for up to three octal digits following the
backslash. Any subsequent digits stand for themselves.

So, in a search pattern, “\11” is a backreference if there are
11 or more sets of capturing parentheses in the pattern. If
not, it matches a tab. “\011” always matches a tab. “\81” is
a backreference if there are 81 or more captured
subpatterns, but matches an ASCII null followed by the two
characters “8” and “1” otherwise.
154 Chapter 8: Searching with Grep

In Character Classes

In Replacement Patterns

POSIX-Style Character Classes
TextWrangler now provides support for POSIX-style character classes. These classes are
used in the form [:CLASS:], and are only available inside regular character classes (in other
words, inside another set of square brackets).

Modifier Effect

\OCTAL Inside a character class, a backslash followed by up to three
octal digits generates a single byte character reference from
the least significant eight bits of the value. Thus, the
character class “[\7]” will match a single byte with octal
value 7 (equivalent to “\x07”). “[\8]” will match a literal “8”
character.

Modifier Effect

\NNN+ If more than two decimal digits follow the backslash, only
the first two are considered part of the backreference. Thus,
“\111” would be interpreted as the 11th backreference,
followed by a literal “1”. You may use a leading zero; for
example, if in your replacement pattern you want the first
backreference followed by a literal “1”, you can use “\011”.
(If you use “\11”, you will get the 11th backreference, even
if it is empty.)

\NN If two decimal digits follow the backslash, which taken
together represent the value N, and if there is an Nth
captured substring, then all three characters are replaced
with that substring. If there is not an Nth captured
substring, all three characters are discarded—that is, the
backreference is replaced with the empty string.

\N If there is only a single digit N following the backslash and
there is an Nth captured substring, both characters are
replaced with that substring. Otherwise, both characters are
discarded—that is, the backreference is replaced with the
empty string. In replacement patterns, \0 is a backreference
to the entire match (exactly equivalent to “&”).

Class Meaning

alnum letters and digits

alpha letters

ascii character codes 0-127

blank horizontal whitespace

cntrl control characters

digit decimal digits (same as \d)

graph printing characters, excluding spaces
Advanced Grep Topics 155

For example: [[:digit:]]+ is the same as: [\d]+

POSIX-style character class names are case-sensitive.

It is easy to forget that POSIX-style character classes are only available inside regular
character classes. The pattern [:space:], without enclosing square brackets, is just a
character class consisting of the characters “:”, “a”, “c”, “e”, “p”, and “s”.

The names “ascii” and “word” are Perl extensions; the others are defined by the POSIX
standard. Another Perl extension supported by TextWrangler is negated POSIX-style
character classes, which are indicated by a ^ after the colon. For example, to match any run
of non-digit characters:

[[:^digit:]]+

Non-Capturing Parentheses
As described in the preceding section “Creating Subpatterns”, bare parentheses cluster and
capture the subpatterns they contain. The portion of the matching pattern contained within
the first pair of parentheses is available in the backreference \1, the second in \2, and so on.

Opening parentheses are counted from left to right to determine the numbers of the
captured subpatterns. For example, if the following grep pattern:

((red|white) (king|queen))

is matched against the text “red king”, the backreferences will be set as follows:

\1 "red king"
\2 "red"
\3 "king"

Sometimes, however, parentheses are needed only for clustering, not capturing.
TextWrangler now supports non-capturing parentheses, using the syntax:

(?:PATTERN)

That is, if an open parenthesis is followed by “?:”, the subpattern matched by that pair of
parentheses is not counted when computing the backreferences. For example, if the text
“red king” is matched against the pattern:

(?:(red|white) (king|queen))

lower lower case letters

print printing characters, including spaces

punct punctuation characters

space white space (same as \s)

upper upper case letters

word “word” characters (same as \w)

xdigit hexadecimal digits

Class Meaning
156 Chapter 8: Searching with Grep

the backreferences will be set as follows:

\1 "red"
\2 "king"

Perl-Style Pattern Extensions
TextWrangler’s grep engine supports several extended sequences, which provide grep
patterns with super-powers from another universe. Their syntax is in the form:

(?KEY…)

in other words, an open parenthesis followed by a question mark, followed by a KEY for
the particular grep extension, followed by the rest of the subpattern and a closing
parenthesis.

We have already seen one such extension in the previous section of this document—non-
capturing parentheses: (?:…). The remainder are listed in the chart below, and discussed in
detail afterward.

Comments
The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment
play no part in the pattern matching at all.

Search for: foo(?# Hello, this is a comment)bar
Will match: foobar

Extension Meaning

(?:…) Cluster-only parentheses, no capturing

(?#…) Comment, discard all text between the parentheses

(?imsx-imsx) Enable/disable pattern modifiers

(?imsx-
imsx:…)

Cluster-only parens with modifiers

(?=…) Positive lookahead assertion

(?!…) Negative lookahead assertion

(?<=…) Positive lookbehind assertion

(?<!…) Negative lookbehind assertion

(?()…|…) Match with if-then-else

(?()…) Match with if-then

(?>…) Match non-backtracking subpattern (“once-only”)

(?R) Recursive pattern
Advanced Grep Topics 157

Pattern Modifiers
The settings for case sensitivity, multi-line matching, whether the dot character can match
returns, and “extended syntax” can be turned on and off within a pattern by including
sequences of letters between “(?” and “)”.

i — By default, TextWrangler obeys the “Case Sensitive” checkbox in the Find window (or
the corresponding property of the search options when using the scripting interface). The
(?i) option overrides this setting.

m — By default, TextWrangler’s grep engine will match the ^ and $ metacharacters after
and before returns, respectively. If you turn this option off with (?-m), ^ will only match at
the beginning of the document, and $ will only match at the end of the document. (If that is
what you want, however, you should consider using the new \A, \Z, and \z metacharacters
instead of ^ and $.)

s —þBy default, the magic dot metacharacter . matches any character except return (“\r”).
If you turn this option on with (?s), however, dot will match any character. Thus, the pattern
(?s).+ will match an entire document.

x —þWhen turned on, this option changes the meaning of most whitespace characters
(notably, tabs and spaces) and #. Literal whitespace characters are ignored, and the #
character starts a comment that extends until a literal return or the “\r” escape sequence is
encountered. Ostensibly, this option intends to let you write more “readable” patterns.

Perl programmers should already be familiar with these options, as they correspond
directly to the -imsx options for Perl’s m// and s/// operators. Unadorned, these options turn
their corresponding behavior on; when preceded by a hyphen (-), they turn the behavior off.
Setting and unsetting options can occur in the same set of parentheses.

Modifier Meaning Default

i case insensitive according to Case
Sensitive checkbox in Find
window

m allow ^ and $ to match at \r on

s allow . to match \r off

x ignore most white space and
allow inline comments in grep
patterns

off

Example Effect

(?imsx) Turn all four options on

(?-imsx) Turn all four options off

(?i-msx) Turn “i” on, turn “m”, “s”, and “x” off
158 Chapter 8: Searching with Grep

The scope of these option changes depends on where in the pattern the setting occurs. For
settings that are outside any subpattern, the effect is the same as if the options were set or
unset at the start of matching. The following patterns all behave in exactly the same way:

(?i)abc
a(?i)bc
ab(?i)c
abc(?i)

In other words, all four of the above patterns will match without regard to case. Such “top
level” settings apply to the whole pattern (unless there are other changes inside
subpatterns). If there is more than one setting of the same option at the top level, the right-
most setting is used.

If an option change occurs inside a subpattern, the effect is different. An option change
inside a subpattern affects only that part of the subpattern that follows it, so, if the “Case
Sensitive” checkbox is turned on:

Search for: (a(?i)b)c
Will match: abc or aBc

and will not match anything else. (But if “Case Sensitive” is turned off, the “(?i)” in the
above pattern is superfluous and has no effect.) By this means, options can be made to have
different settings in different parts of the pattern. Any changes made in one alternative do
carry on into subsequent branches within the same subpattern. For example:

Search for: (a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when matching “C”, the first branch is
abandoned before the option setting.

These options can also be set using the clustering (non-capturing) parentheses syntax
defined earlier, by inserting the option letters between the “?” and “:”. The scope of options
set in this manner is limited to the subpattern contained therein. Examples:

Search for: (?i:saturday|sunday)
Will match: SATURDAY or Saturday or SUNday (and so on)

Search for: (?i:foo)(?-i:bar)
Will match: foobar or FOObar
Will not match: FOOBAR or fooBAR

Positional Assertions
Positional assertions “anchor” a pattern, without actually matching any characters. Simple
assertions have already been described: those which are invoked with the escape sequences
\b, \B, \A, \Z, \z, ^ and $. For example, the pattern \bfoo\b will only match the string “foo” if
it has word breaks on both sides, but the \b’s do not themselves match any characters; the
entire text matched by this pattern are the three characters “f”, “o”, and “o”.

Lookahead and lookbehind assertions work in a similar manner, but allow you to test for
arbitrary patterns to anchor next to. If you have ever said to yourself, “I would like to match
‘foo’, but only when it is next to ‘bar’,” lookaround assertions fill that need.
Advanced Grep Topics 159

Positive lookahead assertions begin with “(?=”, and negative lookahead assertions begin
with “(?!”. For example:

\w+(?=;)

will match any word followed by a semicolon, but the semicolon is not included as part of
the match.

foo(?!bar)

matches any occurrence of “foo” that is not followed by “bar”. Note that the apparently
similar pattern:

(?!foo)bar

does not find an occurrence of “bar” that is preceded by something other than “foo”; it
finds any occurrence of “bar” whatsoever, because the assertion (?!foo) is always true when
the next three characters are “bar”. A lookbehind assertion is needed to achieve this effect.

Positive lookbehind assertions start with “(?<=”, and negative lookbehind assertions start
with “(?<!”. For example:

(?<!foo)bar

does find an occurrence of “bar” that is not preceded by “foo”. The contents of a
lookbehind assertion are restricted such that all the strings it matches must have a fixed
length. However, if there are several alternatives, they do not all have to have the same
fixed length. Thus

(?<=Martin|Lewis)

is permitted, but

(?<!dogs?|cats?)

causes an error. Branches that match different length strings are permitted only at the top
level of a lookbehind assertion. This is different compared with Perl 5.005, which requires
all branches to match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it
is acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move
the current position back by the fixed width and then try to match. If there are insufficient
characters before the current position, the match is deemed to fail. (Lookbehinds in
conjunction with non-backtracking [a.k.a. “once-only”] subpatterns can be particularly
useful for matching at the ends of strings; an example is given in the section on once-only
subpatterns below.)

Several assertions (of any sort) may occur in succession. For example,

(?<=\d{3})(?<!999)foo
160 Chapter 8: Searching with Grep

matches “foo” preceded by three digits that are not “999”. Notice that each of the assertions
is applied independently at the same point in the subject string. First there is a check that
the previous three characters are all digits, and then there is a check that the same three
characters are not “999”. This pattern does not match “foo” preceded by six characters, the
first of which are digits and the last three of which are not “999”. For example, it does not
match “123abcfoo”. A pattern to do that is:

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checks that the preceding three characters are
not “999”. Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of “baz” that is preceded by “bar” which in turn is not preceded by
“foo”, while

(?<=\d{3}(?!999)...)foo

is another pattern which matches “foo” preceded by three digits and any three characters
that are not “999”.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains
capturing subpatterns within it, these are counted for the purposes of numbering the
capturing subpatterns in the whole pattern. However, substring capturing is carried out only
for positive assertions, because it does not make sense for negative assertions.

Conditional Subpatterns
Conditional subpatterns allow you to apply “if-then” or “if-then-else” logic to pattern
matching. The “if” portion can either be an integer between 1 and 99, or an assertion.

The forms of syntax for an ordinary conditional subpattern are:

if-then: (?(condition)yes-pattern)
if-then-else: (?(condition)yes-pattern|no-pattern)

and for a named conditional subpattern are:

if-then: (?P<NAME>(condition)yes-pattern)
if-then-else: (?P<NAME>(condition)yes-pattern|no-pattern)

If the condition evaluates as true, the “yes-pattern” portion attempts to match. Otherwise,
the “no-pattern” portion does (if there is a “no-pattern”).

If the “condition” text between the parentheses is an integer, it corresponds to the
backreferenced subpattern with the same number. (Do not precede the number with a
backslash.) If the corresponding backreference has previously matched in the pattern, the
condition is satisfied. Here’s an example of how this can be used. Let’s say we want to
match the words “red” or “blue”, and refer to whichever word is matched in the
replacement pattern. That’s easy:

(red|blue)
Advanced Grep Topics 161

To make it harder, let’s say that if (and only if) we match “blue”, we want to optionally
match a space and the word “car” if they follow directly afterward. In other words, we want
to match “red”, “blue”, or if possible, “blue car”, but we do not want to match “red car”.
We cannot use the pattern:

(red|blue)(car)?

because that will match “red car”. Nor can we use:

(red|blue car|blue)

because in our replacement pattern, we want the backreference to only contain “red” or
“blue”, without the “ car”. Using a conditional subpattern, however, we can search for:

((blue)|(red))(?(2) car)?

Here’s how this pattern works. First, we start with “((blue)|(red))”. When this subpattern
matches “blue”, \1 and \2 are set to “blue”, and \3 is empty. When it matches “red”, \1 and
\3 are set to “red”, and \2 is empty.

Next comes the conditional subpattern “(?(2) car)?”. The conditional test is on “2”, the
second backreferenced subpattern: if \2 is set, which in our case means it has matched the
word “blue”, then it will try to match “ car”. If \2 is not set, however, the entire conditional
subpattern is skipped. The question mark at the end of the pattern makes this conditional
match optional, even if \2 is set to “blue”.

Here’s an example that uses an assertion for the condition, and the if-then-else form. Let’s
say we want to match a run of digits of any length, followed by either “ is odd” or “ is
even”, depending on whether the matched digits end with an odd or even digit.

\d+(?(?<=[13579]) is odd| is even)

This pattern starts with “\d+” to match the digits. Next comes a conditional subpattern, with
a positive lookbehind assertion as the condition to be satisfied. The lookbehind assertion is
true only if the last character matched by \d+ was also in the character class [13579]. If that
is true, we next try to match “ is odd”; if it is not, we try to match “ is even”. Thus, this
pattern will match “123 is odd”, “8 is even”, and so on, but will not match “9 is even” or
“144 is odd”.

Once-Only Subpatterns
With both maximizing (greedy) and minimizing (non-greedy) repetition, failure of what
follows normally causes the repeated item to be reevaluated to see if a different number of
repeats allows the rest of the pattern to match. Sometimes it is useful to prevent this, either
to change the nature of the match, or to cause it to fail earlier than it otherwise might, when
the author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern “\d+foo” when matching against the text “123456bar”.
162 Chapter 8: Searching with Grep

After matching all 6 digits and then failing to match “foo”, the normal action of the grep
engine is to try again with only 5 digits matching the \d+ item, and then with 4, and so on,
before ultimately failing. Once-only subpatterns provide the means for specifying that once
a portion of the pattern has matched, it is not to be reevaluated in this way, so the matcher
would give up immediately on failing to match “foo” the first time. The notation is another
kind of special parenthesis, starting with “(?>”, as in this example:

(?>\d+)bar

This kind of parentheses “locks up” the part of the pattern it contains once it has matched,
and a failure further into the pattern is prevented from backtracking into it. Backtracking
past it to previous items, however, works as normal.

In most situations, such as in the example above, the time saved by using once-only
subpatterns is insignificant—a few small fractions of a second, at most. With some
complicated grep patterns or with humongous lines of text, however, you can save
tremendous amounts of time using once-only subpatterns.

Once-only subpatterns are not capturing subpatterns. Simple cases such as the above
example can be thought of as a maximizing repeat that must swallow everything it can. So,
while both \d+ and \d+? are prepared to adjust the number of digits they match in order to
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

Once-only subpatterns can be used in conjunction with lookbehind assertions to specify
efficient matching at the end of a line of text. Consider a simple pattern such as:

abcd$

when applied to a long line of text which does not match (in other words, a long line of text
that does not end with “abcd”). Because matching proceeds from left to right, the grep
engine will look for each “a” in the subject and then see if what follows matches the rest of
the pattern. If the pattern is specified as:

^.*abcd$

the initial .* matches the entire line at first, but when this fails (because there is no
following “a”), it backtracks to match all but the last character, then all but the last two
characters, and so on. Once again the search for “a” covers the entire string, from right to
left, so we are no better off. However, if the pattern is written as:

^(?>.*)(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire line. The
subsequent lookbehind assertion does a single test on the last four characters. If it fails, the
whole match fails immediately. For long strings, this approach makes a significant
difference to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated
an unlimited number of times, the use of a once-only subpattern is the only way to avoid
some failing matches taking a very long time (literally millions or even billions of years, in
some cases!). The pattern:

(\D+|<\d+>)*[!?]
Advanced Grep Topics 163

matches an unlimited number of substrings that either consist of non-digits, or digits
enclosed in <>, followed by either ! or ?. When it matches, it runs quickly. However, if it is
attempts to match this line of text:

aa

it takes a long time before reporting failure. So long, in fact, that it will effectively “freeze”
TextWrangler. This is not really a crash, per se, but left to run on its own, it might take
years before it finally fails. (We are not sure, frankly, because much like determining how
many licks it takes to get to the center of a Tootsie Pop, we do not feel like waiting long
enough to find out.)

The reason this takes so long to fail is because the string can be divided between the two
repeats in a large number of ways, and all have to be tried before the grep engine knows for
certain that the pattern will not match. (The example used [!?] rather than a single character
at the end, because both PCRE and Perl have an optimization that allows for fast failure
when a single character is used. They remember the last single character that is required for
a match, and fail early if it is not present in the string.) If the pattern is changed to

((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

Recursive Patterns
Consider the problem of matching a string in parentheses, allowing for unlimited nested,
balanced parentheses. Without the use of recursion, the best that can be done is to use a
pattern that matches up to some fixed depth of nesting. It is not possible to handle an
arbitrary nesting depth. Perl 5.6 has provided an experimental facility that allows regular
expressions to recurse (among other things). It does this by interpolating Perl code in the
expression at run time, and the code can refer to the expression itself. Obviously,
TextWrangler’s grep engine cannot support the interpolation of Perl code. Instead, the
special item (?R) is provided for the specific case of recursion. The following recursive
pattern solves the parentheses problem:

\(((?>[^()]+)|(?R))*\)

First it matches an opening parenthesis. Then it matches any number of substrings which
can either be a sequence of non-parentheses, or a recursive match of the pattern itself (that
is, a correctly parenthesized substring). Finally there is a closing parenthesis.

This particular example pattern contains nested unlimited repeats, and so the use of a once-
only subpattern for matching strings of non-parentheses is important when applying the
pattern to strings that do not match. For example, when it tries to match against this line of
text:

(aaa()

it yields “no match” quickly. However, if a once-only subpattern is not used, the match runs
for a very long time indeed because there are so many different ways the + and * repeats
can carve up the subject, and all have to be tested before failure can be reported.
164 Chapter 8: Searching with Grep

Recommended Books and
Resources
Mastering Regular Expressions, 3rd Edition
by Jeffrey E.F. Friedl. O’Reilly & Associates, 2006. ISBN 0-596-52812-4

Although it does not cover TextWrangler’s grep features specifically, Mastering Regular
Expressions is an outstanding resource for learning the “how-to” of writing useful grep
patterns, and the second edition is even better than the original.

TextWrangler Talk
The TextWrangler Talk discussion group covers a wide range of topics and questions about
using TextWrangler, which frequently include searching and the use of grep patterns.

 http://groups.google.com/group/textwrangler

Note TextWrangler’s grep engine is based on the PCRE library package, which is open
source software, written by Philip Hazel, and copyright 1997-2004 by the University of
Cambridge, England. For details, see: http://www.pcre.org/
Recommended Books and Resources 165

http://groups.google.com/group/textwrangler
http://www.pcre.org/

166 Chapter 8: Searching with Grep

C H A P T E R

9
Browsers
Browsers are special kinds of windows that let you see a lot of information about
files at once. Browsers typically have two panes: one pane lets you select a file,
the other displays detailed information about the file (often its contents). If you
have performed a Find All search, you have already seen an example of a
TextWrangler browser.

In this chapter
Browser Overview . 167

List Pane – 167 • Toolbar – 168
Text View Pane – 168 • Splitter – 168

Disk Browsers . 169
Disk Browser Controls – 169
Contextual Menu Commands – 170
Dragging Items – 170
Using the List Pane in Disk Browsers – 170

Search Results Browsers . 171
Error Results Browsers . 172

Browser Overview
All TextWrangler browsers share the same basic structure and behavior. All
browsers have a toolbar, a file list, and a text pane. You can either edit files
directly in any browser window, or open them separately.

List Pane
The top pane of a browser lists the items available in the browser. This pane
shows different information for different kinds of browsers:

You can open both files and folders from the list pane. When you double-click a
folder name, TextWrangler replaces the file list pane with the contents of the
folder. When you double-click a file name, TextWrangler opens the file in an
editing window. If the file list pane also included a line number, TextWrangler
scrolls to that line.

Browser File List pane contains

Disk browser Files and folders that TextWrangler can open

Search results File and line number of each match

Error results (or)
general results

File, line number, and status message for each
condition
167

Controls above the list may allow you to determine what kinds of items are displayed in the
list. For example, in disk browsers, there is a popup menu that lets you choose to display
text files, all files, or other types of files, and another that lets you return the browser to a
parent directory of the current folder. In error browsers, checkboxes allow you to hide or
show all errors, warnings, or notes.

For results browsers, TextWrangler shows a hierarchical listing, where all the results
associated with a particular file are grouped under that file, using disclosure triangles
similar to those in the Finder’s list views to reveal or hide the results list.

To remove items from the display list, select them and press the Delete key, or choose Clear
from the Edit menu.

In results browsers, you may Control-click on items in the list to bring up the contextual
menu with relevant commands, such as “Copy”.

Toolbar
The browser toolbar is like the toolbar in editing windows. Some browsers have additional
buttons and controls in the status area as well.

These standard items—the pencil icon; the Function, Text Options, Mark, Path popup
menus; and the Info buttons—should already be familiar to you, since they appear on
TextWrangler document windows by default. See “Window Anatomy” in Chapter 4 for an
explanation of these standard TextWrangler functions.

Text View Pane
When you click on a file name in the list pane, TextWrangler displays that file in the text
view pane, and you can edit the file just as if it were open in a document window.

Splitter
You can change the size of the file list pane or the text view pane by dragging the double
line that separates them. Double-clicking on the splitter bar will collapse the text view pane
completely, and double-clicking on it again (in the bottom of the browser window) will
restore the text pane to its previous proportions. You can also choose the Hide Editor or
View Editor commands in the View menu to hide or display the text view pane.
168 Chapter 9: Browsers

Disk Browsers
Use a disk browser to explore the contents of a disk or a folder without opening each file
one at a time.

To open a disk browser, pull down the File menu and choose Disk Browser from the New
submenu. TextWrangler opens a new disk browser that starts in your home directory, but
you can navigate to any desired location:

The name and path of the file (if any) and directory currently being viewed are displayed in
the title bar of the window. The file list pane displays all the items in the current folder.
Click on a file in the file list pane to open it in the text pane, or double-click to open the file
into a text window.

Disk Browser Controls
The menus at the top and bottom of the file list pane let you create new files and folders,
open existing files and folders, reveal them in the Finder or navigate to them in the
Terminal, limit the kinds of files to show in the list pane, and navigate through your disks
and folders.

Directory Menu
The Directory popup menu at the top of the file list pane always shows the currently active
folder. You can use this menu to “back out” of any folder you are currently in to a higher-
level folder (as you can by Command-clicking the name of a folder in the Finder).
Disk Browsers 169

Action Menu
The commands on the Action (gear) popup menu at the bottom of the file list pane allow
you to open the selected items, reveal them in the Finder, copy their paths, navigate to their
location in the Terminal, move them to the Trash, or create a new file or folder.

Filter Menu
The Filter (magnifying glass) popup menu at the bottom of the file list pane lets you specify
what kinds of files TextWrangler should display:

• All Available: All files which TextWrangler recognizes, including its own
document types. This includes text files, images, text factories, and so on.

• Text Files Only: Only files which TextWrangler recognizes as text files.

• Everything: All items present, including invisible files and folders.

You can also select a file filter to further limit what files TextWrangler should display. (You
can define additional file filters in the Filters panel of the Setup window.)

Toggle Editor Button
Click this button to collapse or expand the browser’s text view pane. (This button has the
same effect as choosing the View/Hide Editor command in the View menu.)

Contextual Menu Commands
If you select one or more items in the file list pane and bring up the contextual menu,
TextWrangler will offer a variety of commands including those available from the Action
menu.

Dragging Items
You can select and drag files and folders from a disk browser’s file list to any location,
either within TextWrangler or elsewhere, which can accept file or folder drags. For
example, you can drag a file from a disk browser to an editing window to insert its
contents, or to a folder in the Finder to copy or move it.

Using the List Pane in Disk Browsers
The list pane of a disk browser displays disks, files, and folders. When you are at the
computer level, the list shows all mounted volumes.

When you click a folder or disk in the list pane, TextWrangler displays the names of all the
files it can open in the text pane, subject to the criteria specified by the Show and Filter
menus.

When you click a file name in the list pane, TextWrangler displays that file in the text pane.

To open a folder or disk and display its contents in the file list pane, you can either double-
click it, or Select it and press Command-Down Arrow.

To go up one level to the enclosing folder or disk, you can either choose the enclosing
folder from the directory popup menu, or press Command-Up Arrow

You can also use Quick Look to examine any non-text file by selecting it and pressing the
spacebar.
170 Chapter 9: Browsers

Note When the list pane has input focus, the browser window’s AppleScript “selection”
property will return a list of the files currently selected. See “Getting and Setting
Properties” on page 214 for further details.

Search Results Browsers
If you selected the Batch Find option when performing a multi-file search, TextWrangler
displays every occurrence of the search string in the searched files in a search results
browser.

The items at the top of the window tell you how many matches TextWrangler found in the
set of files you specified, as well as whether any error conditions or warnings were
generated during the search. The list pane lists each line that contains the matched text.
Every match is identified by file and line number. To choose whether to display the search
errors, warnings, and results, use the checkboxes at the top of the browser.

To open the file which contains a particular match, just click on that match in the results
list. After you have opened a file, you can use the Search menu commands to continue
searching it. (See Chapter 7 for more information on searching.)

The Open button opens the selected items using TextWrangler. To open the selected items
using the Finder, hold down the Option key while clicking the Open button.
Search Results Browsers 171

Error Results Browsers
When you check the syntax of a Unix script, or run a script which generates any errors,
TextWrangler will open an error results browser to list those errors.

Each entry in the list pane corresponds to an error, warning, or note. You can use the
checkboxes for each type of item to suppress or display the associated results as desired.

If you click on a entry in the file list, TextWrangler will open the corresponding file in the
text display pane and select the section of text related to the error.
172 Chapter 9: Browsers

C H A P T E R

10
Preferences
You can use the Preferences command to customize much of TextWrangler’s
behavior. You can decide which windows are open when you launch
TextWrangler, set the default options for windows, set the default options for
searches, and so on. This chapter describes TextWrangler’s extensive preference
options.

In this chapter
The Preferences Window . 173

Searching the Preferences – 175
Appearance Preferences – 175
Application Preferences – 178
Editing Preferences – 180
Editor Defaults Preferences – 180
Keyboard Preferences – 182
Languages Preferences – 183
Menus & Shortcuts Preferences – 184
Printing Preferences – 185
Text Colors Preferences – 186
Text Encodings Preferences – 188
Text Files Preferences – 188
Expert preferences settings – 190

The Setup Window . 190
Bookmarks – 190
Filters – 191
Patterns – 191

The Preferences Window
The Preferences window provides control over many aspects of TextWrangler’s
behavior. You can decide which actions TextWrangler should perform when you
launch it, set default options for editing behavior, examine and set or modify
keyboard shortcuts, create and apply text color schemes, and so on.
173

To open the Preferences window, choose the Preferences command from the TextWrangler
(application) menu.

To select a preference panel, click its name in the list at the left side of the window. The text
area at the top of the Preferences window gives you a brief description of the options
provided by the currently displayed preference panel.

TextWrangler’s Preferences window is non-modal: you can leave it open and change
preference settings while you work, or close it at any time by clicking its close button or by
choosing Close Window from the File menu. Any changes you make to preference options
take effect immediately unless otherwise indicated.

IMPORTANT TextWrangler employs the standard system preferences mechanism to store your
preference settings. Accordingly, you can modify preference options directly by issuing
“defaults write” commands. However, if you choose to modify your preferences by means
of “defaults write” commands other than those documented in this manual or the “Expert
Preferences” page of TextWrangler’s built-in Help book, without explicit advice from Bare
Bones Software technical support, you take responsibility for any adverse effects.

If you discard your TextWrangler preferences file, you will need to re-select any
customized preference options you may have chosen.
174 Chapter 10: Preferences

Searching the Preferences
You can perform keyword searches to quickly locate preference options in the Preferences
window. To do this, just click in the search field below the list of preference panels, and
type a word or partial word into the field. As you type, TextWrangler will search for
instances of the current term and display all the panels which contain it. You can then select
any of the listed panels to view and change the options within it. For example, here is the
Preferences window with an active search for the term “gutter”.

Restore Defaults
Each of TextWrangler’s preference panels contains this button, which you can click to reset
all preference options within the current panel to their factory default settings.

Appearance Preferences
The Appearance preferences let you choose which control and display elements appear in
text windows and in other windows which include text panes.

Toolbar
When any of the listed options are on, TextWrangler displays the toolbar (see page 63). You
can also show or hide the toolbar independently in any editing window.

Text options
When this option is on, TextWrangler displays the Text Options popup in the toolbar (see
page 63).
Appearance Preferences 175

Document proxy icon
When this option is on, TextWrangler displays the document proxy icon in the toolbar (see
page 63). This icon serves as a proxy for the document file; you can click it to reveal the
current file in the Finder, or drag it anywhere the original file can be dragged.

Navigation Bar
When any of the listed options are on, TextWrangler displays the navigation bar (see
page 65). You can also show or hide the navigation bar independently for each text
window. This option is on by default.

Document Navigation
When this option is on, TextWrangler displays the Previous and Next buttons and the
Document popup menu in the navigation bar (see page 66).

Marker menu
When this option is on, TextWrangler displays the Marker popup menu in the navigation
bar (see page 67).

Counterpart button
When this option is on, TextWrangler displays the Counterpart button in the navigation bar
(see page 67).

Included files menu
When this option is on, TextWrangler displays the Included Files popup menu in the
navigation bar (see page 68).

Function menu
When this option is on, TextWrangler displays the Function popup menu in the navigation
bar (see page 66). The related options below control how items appear in the menu.

Sort items by name
If this option is on, TextWrangler sorts the items in the Function popup menu by name.
Otherwise, items appear in the same order in the menu as they appear in the file. This
option is off by default.

Show comment callouts
When this option is on, TextWrangler will suppress callouts embedded in comments from
appearing in the Function popup. This option is on by default.

Show function prototypes
When this option is on, TextWrangler displays the names of function prototypes as well as
function definitions in the Function popup menu. Otherwise, the menu does not include
entries for function prototypes. This option is on by default.

Editing Window
These options control additional elements which TextWrangler can display in editing
windows.
176 Chapter 10: Preferences

Tab stops
If this option is on, TextWrangler displays tab stops as vertical grid lines within the content
area of text windows, using the tab width set in the Editor Defaults panel.

Line numbers
If this option is on, TextWrangler displays line numbers along the left edge of the window.

Gutter
When this option is on, TextWrangler displays the gutter (see page 71). You can show or
hide the gutter independently for each text window. This option is on by default.

Page Guide at N characters
When this option is on, TextWrangler displays the page guide at the specified character
width. The page guide is a visible boundary indicator, whose color and contrast you can
adjust (see page 187). This option is on by default.

Guide Contrast
You can use this sliding control to adjust the contrast level of the page guide display region.
(See “Tab stops” on page 177.)

Text Status Bar
When any of the listed options are on, TextWrangler displays the status bar (see page 70).
You can show or hide the status bar independently for each text window.

Cursor position
When this option is on, TextWrangler displays the current location (line and column) of the
insertion point, or the endpoint of the current selection range in the status bar (see page 70).

Language
When this option is on, TextWrangler displays the Language popup menu in the status bar
(see page 70).

Text encoding
When this option is on, TextWrangler displays the Text Encoding popup menu in the status
bar (see page 70).

Line break type
When this option is on, TextWrangler displays the Line Break Type popup menu in the
status bar (see page 70).

Document statistics
When this option is on, TextWrangler displays an item in the status bar which shows the
number of characters, words, and lines in the document (and, if there's a selection, the
number of characters, words, and lines in the selection range).
Appearance Preferences 177

List Display Font
This option controls the font and size used to display text in browser list panes, including
disk browser, search results browsers, etc. To change this option, click Set to bring up the
standard Font panel, and choose the desired font and size. The default setting is 11 point
Lucida Grande.

Application Preferences
The Application preferences control how TextWrangler checks for updates, when open
files are verified, what action TextWrangler performs at startup, and various other global
settings.

Open documents into the front window...
This option controls whether TextWrangler should attempt to open newly created or
opened documents into the frontmost window (if possible), or whether each document
should open directly into a separate text window.

This option is active by default, and while it is, TextWrangler will handle documents in the
following manner.

When you open an existing document, TextWrangler will open the document into the
frontmost editing window (and bring that window to the front if it is not already there.)

When you create a new document (via the File menu), TextWrangler will either use the
frontmost editing window (if one is available), or make a new editing window if necessary.

Automatically refresh documents as they
change on disk
This option controls whether TextWrangler checks if documents (files) have changed on
disk while they’re open. If an open document has changed on disk, and there are no
unsaved changes, TextWrangler will automatically reload the document. If a document has
changed on disk and also has unsaved changes, TextWrangler will ask whether you want to
reload the document from disk or keep the unsaved changes. This option is on by default.

The effects of the Revert command (from the File menu), and of a file Reload (which
occurs when a document is reloaded by a refresh action) are both undoable.

Remember the N most recently used items
This text field lets you choose how many files appear on the Open Recent sub-menu of the
File menu, and how many folders appear on the folder search popup menu in the Find
Differences folder lists.

Always Show Full Paths in “Open Recent” Menu
Check this option to have TextWrangler always display full paths in the Open Recent
menu. If this option is off, TextWrangler will only display path info when it’s needed to
distinguish between files with the same name.
178 Chapter 10: Preferences

When TextWrangler becomes active
This preference controls what TextWrangler does when you launch it, or activate it when
there are no open windows (e.g. by clicking its Dock icon while the application is already
running). To override any of these actions when launching TextWrangler, hold down the
following modifiers.

Do Nothing
Choose this option to prevent TextWrangler from opening a new text editing window.

New text document
Choose this option to have TextWrangler open a new, empty text editing window.

Reopen documents that were open at last
quit
When this option is on, TextWrangler will remember what documents (as well as disk
browsers and FTP/SFTP browsers) were open when you choose the “Quit” command, and
will attempt to reopen those documents the next time you launch it. This option is on by
default.

Restore unsaved changes
When this option is on, TextWrangler will preserve the contents of any unsaved document
contents when you quit (including untitled documents) and restore those documents the
next time you launch it. If you prefer the traditional Quit behavior, turn this option off.

Include documents on servers
When this option is on, TextWrangler will attempt to reopen documents from remote
servers when you launch it.

Automatically check for updates
This option controls whether TextWrangler automatically looks to see if a newer version is
available. Regardless of the setting of the checkbox, you can manually check for an update
at any time by clicking the Check Now button.

The version checking mechanism used by TextWrangler protects your privacy. It works by
requesting information about the currently available version from Bare Bones Software’s
web server. The server will log the date, time and originating address of the request, and
which versions of the OS and TextWrangler you are using. This information is used to
guide the future development of TextWrangler; it is not personalized and will not be
disclosed. Click the Privacy button to view our posted privacy policy.

This option is not present in copies of TextWrangler obtained via the Mac App Store.

Modifier(s) Function

Option Suppress startup items only

Shift Do not attempt to reopen documents, and
suppress all external services and startup
items.
Application Preferences 179

Editing Preferences
The Editing preferences control the behavior of various general editing behaviors.

Use “hard” lines in soft-wrapped views
When this option is on, the line number bar, cursor position display, and Go To Line
commands in editing views will use line and character position numbers that correspond to
the “hard” line breaks actually present in the document, rather than the soft-wrapped line
breaks.

Additionally, when this option is on, line selection commands and gestures, including the
Select Line command, triple-clicking, and click selection in the left margin, will treat only
“hard” line breaks as line boundaries.

Soft-wrapped line indentation
This option lets you specify how TextWrangler should indent soft wrapped text: flush with
the left edge of the window, at the same indent level as the first line of the paragraph, or
indented one level deeper than the first line of the paragraph.

Line spacing
This control allows you to adjust the amount of space between lines of text in editing
views. The default value is consistent with previous versions of TextWrangler.

Editor Defaults Preferences
The Editor Defaults preferences control the behavior of newly created document windows
and documents without saved state information. Many of the options in this panel parallel
options provided in the Text Options sheet and in the Text Options popup in the toolbar.
The difference is that the options in the Text Options sheet and the Text Options popup
control only the behavior of the active window, while the Editor Defaults preferences
control the behavior of all new windows.

Auto-indent
When this option is selected, pressing the Return key in new windows automatically inserts
spaces or tabs to indent the new line to the same level as the previous line.

Tip To temporarily invert the sense of the Auto Indent option while typing, hold down the
Option key as you press the Return key.

Balance while typing
When this option is selected, TextWrangler flashes the matching open parenthesis, brace,
bracket, or curly quote when you type a closing one. This option is useful when you are
editing source files, to ensure that all delimiters are balanced.
180 Chapter 10: Preferences

Use typographer’s quotes
When this option is on, TextWrangler will automatically substitutes curly (or
typographer’s) quotes (“ ” ‘ ’) for straight quotes (" ') in any new documents you create.

Tip To type a straight quote when this option is selected (or to type a curly quote when
the option is deselected), hold down the Control key as you type a single or double
quote.

Note You should avoid using typographer’s quotes when creating or editing any plain-text
documents such as email message content or source code.

Auto-expand tabs
When this option is on, TextWrangler inserts an appropriate number of spaces instead of a
tab character every time you press the Tab key.

Show invisible characters
This option shows or hides non-printing characters in the window. Select this option when
you want to see line breaks, tabs, and gremlins (invisible characters). TextWrangler uses
these symbols to represent non-printing characters:

Show Spaces
When this option is on (and Show Invisibles is also active), TextWrangler will display
placeholder characters for spaces. Turn this option off to suppress the display of spaces
(reducing visual clutter when you are displaying invisible characters).

Note Non-breaking spaces (typed by pressing Option-space) will not be displayed with a
placeholder.

Check spelling as you type
When this option is on, TextWrangler will automatically check spelling as you type, and
underline any potentially misspelled words. Turn this option off to prevent TextWrangler
from automatically checking spelling.

You can turn on automatic spell checking for the active document only by choosing Check
Spelling as You Type from the Text menu. (See “Check Spelling As You Type” on
page 96.)

Symbo
l Meaning

Δ tab

◊ space

• non-breaking space

¬ line break

¶ page break

¿ other non-printing
characters
Editor Defaults Preferences 181

Default font
This option controls the standard font and font size which TextWrangler uses to display the
contents of text windows. To change this option, click Set to bring up the standard Font
panel, and choose the desired font and size. The default font is “Menlo Regular” at 12
points.

Note You can also adjust the default tab width on a per-language basis. To do so, select a
language entry in the Languages preference panel, click “Options” to bring up the
language options sheet, and enter the desired tab width in the Editing section of this
sheet.

Tab Width
This option controls the default number of spaces that TextWrangler uses to represent the
width of a tab character.

Soft Wrap Text
When this option is selected, TextWrangler soft-wraps the text in the file to the right margin
that you choose: the Page Guide, the window width, or a specified number of characters, as
selected by the options below the checkbox.

Keyboard Preferences
The Keyboard preferences control TextWrangler’s response to the use of various special
keys, including the ability to recognize Emacs key bindings

“Home” and “End” Keys
Choose “Scroll to Beginning and End of Document” to have the Home and End keys
perform these respective actions. This is the default setting, which reflects the standard key
motion behavior in Macintosh applications.

Choose “Move Cursor to Beginning and End of Current Line” to have the Home and End
keys perform these respective actions instead. This option may be useful for those
accustomed to Windows editing key behavior.

Enter key generates Return
When this option is on, TextWrangler will generate a carriage return when you press the
Enter key.

When this option is off, pressing the Enter key will bring the current insertion point (or
selection range) into view.

Allow Tab key to indent text blocks
When this option is on, you can press the Tab key to invoke the Shift Right command, or
Shift-Tab to invoke the Shift Left command; this may be useful for those accustomed to
Windows editing key behavior. When this option is off, pressing Tab will insert a tab
character in the normal manner. This option is off by default.
182 Chapter 10: Preferences

Enable Shift-Delete for forward delete
When this option is on, holding down the Shift key with the Delete key makes the Delete key
work the same way as the Forward Delete key on extended keyboards.

Option-¥ on Japanese keyboards
This option controls whether typing Option-yen on a Japanese keyboard generates a yen
symbol “ ¥ ” or a backslash “\”.

Emulate Emacs key bindings
If turned on, this option allows you to use the basic Emacs navigation keystrokes to move
around in editing views. It is not a full Emacs emulation mode; rather, it is more of a
comfort blanket for individuals with Emacs key bindings hard-wired into their muscle
memory. See Appendix B, “Editing Shortcuts,” for a list of the Emacs commands
TextWrangler supports.

Display status window
When both this option and “Emulate Emacs key bindings” are on, TextWrangler will
display a small palette which shows Emacs shortcuts as you type them.

Languages Preferences
The Languages preferences allow you to configure how TextWrangler maps file names to
language types (e.g. “.html” to HTML), and allows you to apply customized behavior and
display parameters to any installed language.

Installed Languages
Click the “Installed Languages” button at the bottom of this panel to see a complete list of
installed languages, together with the language module version number (if applicable) and
filename extension(s) associated with each language. (This list includes both languages
intrinsically supported by TextWrangler, and those added via installed language modules.)

By default, TextWrangler will apply your active preference settings within each language.

If you wish to modify how TextWrangler treats documents having a particular language,
e.g. to have TextWrangler use a specific tab width or a custom color scheme, you may add
a custom language preference.

To create such a preference, click the plus (+) button below the list of Custom Language
Preferences, and select the desired language from the resulting popup. When you do so,
TextWrangler will display a language options sheet which contains the following sections:

• General: In this section, you can view or change the comment-start and comment-
end strings used by the Un/Comment command on the Text menu for the selected
language, or to view or change the Reference URL Template used by the Find in
Reference command.

• Editor: In this section, you can view or change the default display and editing
options used for documents in the selected language. (These options parallel the
options provided by the Text Options command.)
Languages Preferences 183

• Display: In this section, you can view or change the default items which appear on
the navigation bar and status bar for documents in the selected language. You can
also choose any available color scheme to use for syntax coloring of documents in
the selected language.

To remove an existing language preference, select the desired entry in the list of Custom
Language Preferences, and click the minus (-) button below the list. Once you have
removed the entry, TextWrangler will again apply its active global preferences settings to
all documents with that language.

Custom Extension Mappings
TextWrangler includes a set of default file extension mappings which cover the most
common usages for each supported language, while each language module ordinarily
contains extension mappings for the language it supports.

You may add (or remove) additional extension mapping via the Custom Extension
Mappings list. To add a mapping, click the plus (+) button below the list, click in the Suffix
column and type the desired filename extension, then select the associated language via the
adjacent popup. (You can also edit existing mappings in the same manner.)

Note You can use wildcards in the suffix to indicate single characters (?), any number of
characters (*), or a single digit (#). For example, “page.#html” could map to a
different language from “.html”.

Menus & Shortcuts Preferences
The Menus & Shortcuts preferences allow you to show or hide whole menus or individual
commands. You can also assign key equivalents to commands and various window
elements, as well as to clippings and scripts.
184 Chapter 10: Preferences

Menu Key Equivalents and Item Visibility
This section of the preference panel displays a hierarchical list of each menu and menu
command available within TextWrangler.

You can hide any menu or command which is not necessary for TextWrangler to function,
by turning off the checkbox next to that item’s name. (The checkbox is disabled for
necessary items, such as the File menu and the Quit command.)

You can assign or change the keyboard shortcut (key equivalent) for any menu command,
as well as items on the Text Options, Markers, and Line Breaks toolbar popup menus, by
double-clicking on the right-hand portion of that command's list item and typing the
desired key equivalent in the Set Key sheet.

To clear the key equivalent from a menu command, double-click on the right-hand portion
of that command’s list item and press the Delete key.

Click Restore Defaults to restore all key equivalents to their factory default values (as listed
in Appendix A).

Available Key Combinations
All menu key combinations must include either the Command key or the Control key (or
both), except function keys, which may be used unmodified. The Help, Home, End, Page
Up and Page Down keys can be used in menu key combinations as well. The Help key can
be assigned without modifiers; the others must be used in combination with at least either
the Command or Control key.

Note The system may preempt certain key combinations, such as Command-Tab.

Allow menu key equivalents to autorepeat
Turn this option on to enable autorepeat when typing key equivalents. (This option is off by
default since according to the Macintosh Human Interface Guidelines, menu commands
should not autorepeat.)

The Preview Helpers preference panel lists all web browsers on your machine which are
available to preview HTML documents.

Printing Preferences
The Printing preferences control TextWrangler’s default document printing behavior.

Print using document’s font
When this option is on, TextWrangler uses the document’s display font and tab settings
when printing.

Printing font
This option specifies the default font TextWrangler uses for printing when “Print using
document’s font” is not active. Click Set to bring up the standard Font panel, where you can
choose a font and font size. The current printing font options appear in the display box.
Printing Preferences 185

Frame printing area
When this option is on, TextWrangler draws a box along the edges of the printed text.

Print page headers
When this option is on, TextWrangler prints the page number, the name of the file, the time
and date printed in a header at the top of each page.

Print full pathname
When this option is on, TextWrangler prints the full pathname of the file being printed in
the header.

Time stamp
This option let you choose whether the date that appears in the printed page header is the
date that the file was last modified or the date that the file was printed.

Print line numbers
When this option is on, TextWrangler prints line numbers along the left edge of the paper.

1-inch Gutter
When this option is on, TextWrangler leaves a one-inch margin along the left edge of the
paper. Use this option if you usually store printed pages in three-ring binders.

Print color syntax
If this checkbox is on, TextWrangler prints all colorized text within the document in color.
You should generally use this option only on color printers, as colorized text may come out
in difficult-to-read dithered shades of gray on black-and-white printers.

Text Colors Preferences
The Text Colors preferences let you adjust the default colors that TextWrangler applies to
syntax elements, as well as the foreground and background text colors and highlight colors.

You may also create and load custom color schemes within this panel. To save a color
scheme, click the “Save Scheme...” button and name the theme. To load a saved color
scheme, choose it in the Color Scheme popup menu.

The format for color scheme files is the same as that used by BBEdit 10, and the BBColors
tool:

http://www.daringfireball.net/projects/bbcolors/

You can further associate a saved color scheme with any language via the Custom
Language Preferences list in the Languages preference panel. (See “Languages
Preferences” on page 183.)
186 Chapter 10: Preferences

http://www.daringfireball.net/projects/bbcolors/

How to Change an Element’s Color
The color bars show the colors that TextWrangler uses to display different interface and
language elements. To change the color for any element, click the adjacent color box to
open the system color picker which you can use to select a new color. To restore all colors
and options to their default settings, click the Restore Defaults button.

General
The three initial options control the foreground (text) and background (window) colors and
the color of the underline used by the spelling checker to mark questioned words.

Spaces
This option controls the color TextWrangler uses to display spaces when the Show
Invisibles and Show Spaces display options are active.

Other invisibles
This option controls the color TextWrangler uses to display invisible characters other than
spaces when the Show Invisibles display options is active.

Use Custom Highlight Color
Turn this option on to have TextWrangler use custom highlight colors. You can choose the
primary and secondary highlight colors.

Highlight Insertion Point
When this option is on, TextWrangler highlights the line currently containing the insertion
point using the indicated color. You can choose the line highlight color.

Source Code
These options control the colors that TextWrangler uses to display the corresponding
language elements.

• Keywords are those terms defined in a language’s specification

• Predefined names are words which are not language keywords, but which are
predefined by a language's reference implementation, or which are part of a
language's standard library/framework support, or which have other special
meaning to developers writing code in that language.

• Comments are all text set off by a language’s designated comment marker(s).

• String and numeric constants are as defined by a language’s specification.

• ctags symbols are any words or elements identified in an associated ctags file.

Markup
These options control the colors that TextWrangler uses to display the corresponding types
of HTML and XML tags and any attribute names and values within such tags.
Text Colors Preferences 187

Text Encodings Preferences
The top of the Text Encodings preference panel contains an alphabetical list of every
character set encoding available in the system, and allows you to choose which of these
encodings TextWrangler includes in its menus. These menu are:

• The Read As popup menu in the Open dialog

• The Encoding popup menu in the Options dialog within the Save dialog

• The Encoding popup in the status bar

• The character set popup menus in various HTML tools dialogs (including the New
HTML Document dialog)

• The encoding selection popup menus in this preference panel

To include an encoding for display, select it and click Enable. To remove an encoding from
display, select it and click Disable. To include all encodings or remove all but the required
the encodings, click the Enable All or Disable All buttons respectively.

(All available Unicode encodings are permanently enabled and cannot be turned off.)

Tip To keep the length of the encoding menus manageable, you should add only those
encodings which you use frequently.)

Default text encoding for new documents
TextWrangler uses the encoding specified by this option for new documents which do not
contain an intrinsic encoding specification.

If file’s encoding can’t be guessed, try
If TextWrangler cannot determine a file’s proper encoding by examination, it will try
opening the file using the encoding(s) contained in this list, in the order they appear.

Text Files Preferences
The Text Files preferences control how TextWrangler opens and saves files, including
whether to make backups.

Line breaks
This option controls what kind of line breaks TextWrangler writes when creating a new file.
You can choose:

• Unix line breaks (ASCII 10) for general use. This is the default option.

• Classic Mac line breaks (ASCII 13) if you will be using the file with Classic
Macintosh applications.

• Windows line breaks (ASCII 13/10) if the file will reside on a Windows server or
if you are sending it to someone who uses a Windows system
188 Chapter 10: Preferences

Ensure file ends with line break
When this option is on, TextWrangler will add a line break at the end of the file if there is
not already one present.

You can also adjust this option on a per-language basis by adding custom language
preferences. (See “Languages Preferences” on page 183).

Strip trailing whitespace
When this option is on, TextWrangler will trim all trailing non-vertical whitespace from the
document file before writing it out.

You can also adjust this option on a per-language basis by adding custom language
preferences. (See “Languages Preferences” on page 183).

Backups
These options control whether TextWrangler should make backup copies of edited files,
and the manner in which it does so.

Make backup before saving
Turn this option on to have TextWrangler automatically make a backup copy of each file
that you save. TextWrangler creates a single backup file for each file that you save in the
same folder as that file. This option is global and backups can no longer be made on a per-
file basis. However, you can exclude individual files from being backed up by adding an
Emacs variable to them (see “Emacs Local Variables” on page 38).

When this option is on, and you close a document with unsaved changes and elect to
discard those changes (“Don't Save”), TextWrangler will automatically save a snapshot of
the document's contents in the same directory as the document, and the snapshot file’s
name will follow the Emacs convention “#foo.txt#” (or if the “Preserve file name
extension” (see below) is on, the snapshot's name will be “#foo#.txt”).

Keep historical backups
When this option is on, TextWrangler will preserve backups in the folder “~/Documents/
TextWrangler Backups/” and the “Preserve File Name” option (see below) will
automatically be turned on and locked.

Within the backup folder will be one folder for each day's backup files. The format of the
dated folder name is static and non-localized: YYYY-MM-DD. Inside of each day’s backup
folder will be all of the backup files made on that day, each named using a
timestamped format.

You may change the location of the backup folder by placing a folder alias named
“TextWrangler Backups” in your “Documents” folder (~/Documents/) and TextWrangler
will follow the alias.

Preserve file name extension
By default, the backup files which TextWrangler creates are named in accordance with
current system conventions (which themselves follow the old Emacs convention): the
backup file takes the name of the original with a tilde appended; for example, “foo.html~”
is the backup of “foo.html”.
Text Files Preferences 189

If you want backup files to have the same filename extension as the originals, turn on this
option to have TextWrangler place the tilde after the “base” name of the file; for example,
“foo~.html”.

Controlling Backups with Emacs Variables
You may also use an Emacs variable to control whether or not a given file is backed up.
There are two ways to do this:

Absolute: If the variable line/block contains a “make-backup-files” variable, that variable’s
value will override the global “Make Backup Before Saving” preference.

-*- make-backup-files: 1 -*- --> always back up this file
-*- make-backup-files: 0 -*- --> never back up this file

If the first letter of the variable’s value is “y”, “t”, or “1”, the value is “yes”, otherwise it’s
“no”. These are all synonymous:

make-backup-files: yes
make-backup-files: y
make-backup-files: true
make-backup-files: t
make-backup-files: 1

Inhibit: If the variable’s line/block contains a “backup-inhibited” variable, and its value is
true (see above), then the file will never be backed up, even if “Make backup before
saving” is turned on in the global preferences.

Expert preferences settings
In addition to the preference settings which can be made through the Preferences window,
TextWrangler supports a number of expert preferences which you can adjust by issuing an
appropriate “defaults write” command.

The “Expert Preferences” page within TextWrangler’s built-in Help book (choose
“TextWrangler Help” from the “Help” menu) contains a complete, current listing of these
options.

The Setup Window
The Setup window allows you to manage several types of configuration info which
TextWrangler uses, including FTP/SFTP bookmarks, file filters, and grep search patterns.
(In versions prior to 4.0, most of this information was managed through the Preferences
window.)

Bookmarks
This panel lists any bookmarks you have created for FTP and SFTP servers. You may click
the plus (+) button to create a new bookmark, double-click any bookmark item to edit its
stored options (or rename it), or select a bookmark and click the minus (-) button to remove
it.
190 Chapter 10: Preferences

Filters
The Filters panel lists all the file filters you have defined for use with multi-file searches,
Find Differences, and disk browsers. You may click the plus (+) button to create a new
filter, double-click any filter item to edit its stored options (or rename it), or select a filter
and click the minus (-) button to remove it. (For more information on using file filters in
searches, see Chapter 7.)

Patterns
This list displays all the grep patterns (regular expressions) you have stored via the Grep
pattern popup in the Find and Multi-File Search windows. These patterns are also available
in most commands which allow you to specify grep patterns, such as the Process Lines
commands in the Text menu.

You may click the plus (+) button to create a new pattern, double-click any pattern item to
edit its stored options (or rename it), or select a pattern and click the minus (-) button to
remove it.
The Setup Window 191

192 Chapter 10: Preferences

C H A P T E R

11
Scripting TextWrangler

TextWrangler offers access to nearly all of its features and commands via
AppleScript. This chapter provides a brief overview of AppleScript, discusses
TextWrangler’s scripting model, and explains how you can use scripts within
TextWrangler.

An excellent way to learn how to script TextWrangler is to look at the scripts
others have written for it, or to turn on recording in your script editor while you
perform actions in TextWrangler. A number of example scripts are included in the
standard distribution package. The TextWrangler Talk discussion group is also a
good resource for learning more about scripting.

http://groups.google.com/group/textwrangler/

IMPORTANT Regardless of whether you are new to scripting TextWrangler or are familiar with
scripting previous versions, we strongly recommend that you carefully review the
sections “TextWrangler and AppleScript” and “Working with Scripts” in this
chapter.

In this chapter
AppleScript Overview . 193

About AppleScript – 194
Scriptable Applications and Apple Events – 194
Reading an AppleScript Dictionary – 195
Recordable Applications – 200 • Saving Scripts – 201
Using Scripts with Applications – 201 • Scripting Resources – 202

Using AppleScripts in TextWrangler . 203
Recording Actions within TextWrangler – 203 • The Scripts Menu – 204
The Scripts Palette – 205 • Organizing Scripts – 205
Attaching Scripts to Menu Items – 206
Attaching Scripts to Events – 207

TextWrangler’s Scripting Model . 212
Script Compatibility – 212 • Getting and Setting Properties – 214
Performing Actions – 215 • Common AppleScript Pitfalls – 220

AppleScript Overview
If you are familiar with AppleScript, you should have little difficulty scripting
TextWrangler. It has a robust and highly flexible object model. If you do not
know much about scripting, though, read on for an introduction to the necessary
concepts.
193

http://groups.google.com/group/bbedit/

About AppleScript
AppleScript is an English-like language which you can use to write scripts that automate
the actions of applications, and exchange data between applications. Although
AppleScripts can manipulate applications’ user interfaces by taking advantage of the
system’s GUI Scripting capability, this is not their primary function. Rather, scripts talk
directly to a application’s internals, bypassing its user interface and interacting directly
with its data and capabilities.

If you want to insert some text into a document, emulating a user typing into an editing
window is not the most efficient way of accomplishing this. With AppleScript, you just tell
the application to insert the text directly. If you want the application to save the frontmost
document, you need not mime choosing Save from the File menu, but rather just tell the
application to save its frontmost document.

Note AppleScript is actually a specific language which resides atop the general Open
Scripting Architecture (OSA) provided by Mac OS X. Although AppleScript is by far the
most common OSA language, there are others, including a JavaScript variant. All OSA
languages are capable of accomplishing similar things, although the actual commands
used differ from one language to the next. In this chapter, we will focus exclusively on
AppleScript, since it is the standard scripting language, but you should bear in mind
that there are other options.

Scriptable Applications and Apple Events
Since AppleScripts must have direct access to an application’s internal data structures, any
application that will be used in an AppleScript must be designed to allow this access. We
say such applications are scriptable. TextWrangler is scriptable, as are many, many other
programs. However, it is important to note that not every application is scriptable, and
AppleScripts are not the best solution for automating applications that are not.

What goes on in an application that is scriptable? The foundation of AppleScript is
something called the Apple Event. Macintosh applications are designed around an event
loop; they go around in circles waiting for you, the esteemed user, to do something (choose
a menu command, press some keys, and so on). These actions are passed to the application
by the operating system in the form of an event. The application decodes the event to figure
out what you did, and then performs an appropriate operation. After an event has been
handled, the application goes back to waiting for another one. (At this point, the Mac OS
may decide to give some time to another application on your computer.)

Apple Events are special events that applications send to each other, enabling a feature
called inter-application communication (IAC). (It’s a mouthful, but it just means
applications can talk to each other.) Apple Events are also the way AppleScripts tell
applications what to do, and which data to retrieve. So to be scriptable, an application must
first support Apple Events.

Apple Events in their naked form are raw and cryptic things—bits of hieroglyphics only a
programmer could love. So a scriptable application also has a scripting dictionary. The
scripting dictionary tells any application that lets you write AppleScripts, such as the
standard Script Editor, the English-like equivalent for each Apple Event and each event’s
parameters.
194 Chapter 11: Scripting TextWrangler

It is important to note that because Apple Events were originally designed to allow
applications to communicate with each other, AppleScripts automatically inherit the ability
to talk to more than one application. It is common in the publishing industry, for instance,
to write scripts that obtain product information from a FileMaker Pro database and insert it
into an InDesign file. This integration is one of the Macintosh’s primary strengths.

You use AppleScript’s tell verb to indicate which application you are talking to. If you are
only sending one command, you can write it on one line, like this:

tell application "TextWrangler" to count text documents

If you are sending several commands to the same application, it is more convenient to write
it this way:

tell application "TextWrangler"
count text documents
repeat with x from 1 to the result

save text document x
end repeat

end tell

The Script Editor automatically indents the lines inside the tell block for you so you can
more easily follow the organization of the script.

Reading an AppleScript Dictionary
To display an application’s AppleScript dictionary, you can simply drag that application
onto the Script Editor icon, or use the Script Editor’s Open Dictionary command. As we
noted earlier, all scriptable applications include a dictionary that tells AppleScript how to
convert English-like commands into the Apple Events actually expected by the application.
The Script Editor uses this same information to display a sort of “vocabulary guide” that
helps you write your scripts.

We will naturally use TextWrangler’s dictionary, shown below, to illustrate how to read a
dictionary.

(You will probably want to make the window bigger if you have room on your screen.)
AppleScript Overview 195

Down the left side is a list of every event and object supported by the application. An event
is a verb—it tells the application what to do. A class is a noun: a piece of data, or a
structured collection of data, inside the program. In TextWrangler, for instance, classes are
things like files, windows, the clipboard, browsers, and so on.

Suites
The first thing you will notice is that the events and classes are divided into suites. A suite
is just a collection of related events and classes. Apple, for instance, has decreed that all
applications should support particular events, which together are called the Required Suite.
Another Apple-defined suite is the Standard Suite: if an application offers certain functions
which Apple considers to be common, it should use these standard terms, so that scripters
do not need to learn a new term for each application they work with. After that, it is a free-
for-all—each developer is free to organize their events and classes however they think best.

In addition to the Required and Standard suites, TextWrangler has a Miscellaneous suite, a
TextWrangler Suite, a Text suite, and a Unix Scripting suite.

Within each suite, events—verbs—are displayed in normal text, while classes—nouns—
are italicized. Most commands sent to TextWrangler will start with one of the verbs. (In
some cases, get might be implied.)

Events
Let’s look more closely at one of the events—Save is a good one to start with. It is shown
below.

The right side of the window shows the syntax of the selected event, as well as a brief
description of its function. The boldface words are keywords; they must be included
exactly as shown or the script will not compile. The normal text tells you what kind of
information goes after each keyword. For example, after save you must give a reference;
the italicized comment next to that line indicates that it is a reference to the window to be
saved. In other words, some window object, which in TextWrangler would be window 1 for
the frontmost window, or window "Text File" if you want to specify a window by name.
(we will show you how to figure all that out in a moment—you have to look at the window
class’s dictionary entry.)
196 Chapter 11: Scripting TextWrangler

Anything in square brackets is optional. Most of the rest of the save event is optional, in
fact. The basic event just saves the frontmost window to the same file from which it was
opened. However, you can also optionally include the word to followed by a file reference.
(You specify a file simply by using the word file followed by the path name of the file, as in
file "Hard Disk:Users:Adam:Documents:My file".) If you specify a file to save the window
to, the text will be saved into that file instead of the file it came from—like using Save As
instead of Save.

The last three optional parts of the save event are denoted as boolean. That means they take
either a true or a false value. In AppleScript, there are a couple of different ways to specify
boolean values. You can write saving as stationery true to tell TextWrangler to save the file
as a stationery document. Or you can write with saving as stationery. You will notice that
the last two parameters default to true if you do not specify them as false. To do that, you
would use add to recent list false or without add to recent list. Whichever way you write it,
you will notice that when you compile the script, AppleScript rewrites it using “with” or
“without”. Since that is the syntax AppleScript seems to like best, that is probably the one
you should get used to thinking in.

Let’s take a look at another one: the prosaic get. Select get from TextWrangler’s dictionary
listing and take a quick look at its class definition.You use get to retrieve information from
an application. You must specify a reference to the object you want to retrieve, and you can
specify a coercion—a condition that tells AppleScript to treat one type of data as if it were
another—by adding the as clause. However, after that is the Result: line, which we have not
seen before. This line tells you what type of value the command returns. (This value is
placed in the AppleScript system variable called the result.) Get can retrieve any kind of
object, so it can return anything, as indicated here. Other events might return a specific type
of result, or none at all. (Save did not have a Result: line in its dictionary entry, which
means it does not return a result.)
AppleScript Overview 197

Classes and the Class Hierarchy
Let’s look now at a typical class definition: window will do nicely. It is in the TextWrangler
Suite, toward the bottom.

All windows in TextWrangler belong to this class. A class defines a particular kind of
object; a particular example of an object belonging to the class is said to be an instance of
that class, or just an object of that class. So here we are looking at the class itself; each
individual window object has all these properties.

After a tag line that tells you about the class (“an open window”) comes the plural form.
AppleScript lets you refer to windows either singly or as a group, so it needs to know what
the plural of every term is. For example, try this little script:

tell application "TextWrangler" to count windows

The result of this script is the total number of window objects currently displayed by
TextWrangler.

After the plural form comes a list of properties. Some objects do not have properties—for
example, a string—but many applications do. An object’s properties are merely a collection
of data that describes that particular object. For example, as you look down the list of
window properties, you will see that every window has a name, every window has a
position, every window has bounds (the area of the screen it covers), and so on.
198 Chapter 11: Scripting TextWrangler

The first item on the list, though, is <inheritance> item. This tells you that a window is a
kind of item, and that it therefore has all the properties of an item. Take a quick look at
item’s class definition, shown below.

You will see three properties: properties, ID, and container. The first entry properties is a
record containing all the object’s properties. In other words, because a window is an item, it
has, in addition to all its listed properties, another property which returns all the other
properties as a record—a single piece of data that can be stored in a variable. Every class in
TextWrangler is part of a hierarchy with the item class at the top, so every object in
TextWrangler “inherits” the properties property. This catch-all property can be handy for
making exact duplicates of objects, among other uses.

You may realize that TextWrangler has several kinds of windows; you can see their classes
listed in the dictionary: clipboard window, differences window, disk browser window, text
window, tool window, and the like. Let’s look at text window:
AppleScript Overview 199

You can see that a text window inherits all the properties of the window class. And, since
the window class inherits all the properties of the item class, this means that the text window
class also has the properties property defined by the item class.

To make explicit what you might have already gathered, classes in AppleScript form a
hierarchy. That is, classes can be based on other classes. Such a class is called a subclass,
and the class on which a subclass is based is referred to as its parent class. (In AppleScript,
classes can only have one parent. Multiple inheritance is a feature found in more complex
languages.)

The idea of a class hierarchy makes it easier for us to add new features to TextWrangler,
since when we want to create a new kind of window, half the work is already done.
However, when scripting, you may need to flip back and forth between two or more class
definitions to find all the properties of the object you are working with. (This is, technically
speaking, a limitation of Apple’s Script Editor. There is no reason the inherited properties
could not automatically be included in a subclass listing by a smarter editor, for example,
Script Debugger, which does this.)

Now that we have the class hierarchy under control, let’s look at the properties themselves
more closely. we will stick with the text window class at this point.

Properties of an object are referred to using the preposition of. For example, the following
line of script returns the font of the frontmost text window.

tell application "TextWrangler" to get display font of
text window 1

Note In this specific example, you can just write get display font of window 1. AppleScript
will figure out that window 1 is more specifically a text window, and therefore has a
display font property, even though the generic window class does not have any such
property. All the properties of the object are available even if you did not use its
specific class name. However, in most cases, you should specify exactly the object you
want; this distinction is especially important when dealing with text documents
(content) versus text windows (display elements).

You can set the properties using the set event, like so:

tell application "TextWrangler" to set display font of text
window 1 to "Lucida Grande"

Let’s go back to the window class for a moment. Most of the properties of this class are
marked with the abbreviation [r/o]. That stands for Read-Only. In other words, you can
only get these properties, not set them.

Recordable Applications
Once an application accepts Apple Events, it actually makes a good deal of sense for an
application to be designed in two parts: the user interface that you see, and the “engine”
that does all the work. (An application designed this way is sometimes said to be factored.)
The user interface then communicates with the engine via Apple Events.

The design of the Apple Event system makes it possible to “record” events into a script.
This feature not only lets you automate frequently performed tasks with little hassle, it also
can be an enormous aid in writing larger and more complicated scripts, because the
application tells you what events and objects to use for the kind of task you record.
200 Chapter 11: Scripting TextWrangler

Because of the important recording functionality they enable, applications that have been
factored and use Apple Events to let the two halves communicate are said to be recordable.
It is important to note that not all scriptable applications are recordable.

Saving Scripts
Any AppleScript can be saved in what’s called a compiled script file. A compiled script file
contains the actual Apple Events; by generating these events when you save the file, the
operating system does not have to convert your English-like commands into events each
time you run the script, which means it loads faster. When double-clicked in the Finder, a
compiled script file automatically opens in the Script Editor, where it can be run. A script
can also be saved as a stand-alone application, or applet, in which case double-clicking the
script’s Finder icon automatically runs the script. Both types of files can be saved with or
without the English-like source code; if you save it without the source code, other users
you give the script to will not be able to make any changes to it (of course, you should also
keep a copy of the script with the source for yourself).

Using Scripts with Applications
Although you can place a script applet in the global Scripts menu, or in any folder, and use
it any time you need it, many applications (including TextWrangler) provide a special menu
that lets you launch compiled scripts intended specifically for use with that one application.
Since you do not have to save them as applets, they take up less disk space and launch more
quickly. They also show up only in the application you use them with, rather than cluttering
your global Scripts menu.

Some applications go even further, allowing you to define scripts to be run when certain
things happen in the program. For example, an application might let you define a script to
be executed when the user chooses any menu item. The script might then perform some
pre-processing, and then exit by telling the application whether to continue with the menu
command or to cancel it. As a simple example, a script might check to see what printer is
selected when the user chooses the Print command. If it is the expensive color dye-
sublimation printer, on which printing a page costs several dollars, the script could remind
the user of that fact and confirm their intention (through an alert) before continuing with
the print operation.

An application that supports such a feature (or any method of integrating user-written
scripts seamlessly into its user interface) is said to be attachable, because the scripts
become “attached” to the features of the program. (More details about using this feature are
provided later in this chapter.)
AppleScript Overview 201

Scripting Resources
Covering all the details you might need to write your own AppleScripts is not something
we can reasonably do in this manual. AppleScript, despite its deceptively simple English-
like syntax, is a sophisticated object-oriented language with many subtleties. For this
reason, we suggest you consult supplemental documentation and resources if you are a
beginning scripter.

A good place to start is with someone else’s script: find a script that does almost what you
want it to and repurpose it. Even if you cannot find a script that does anything close to what
you want, reading others’ scripts is a good way to learn how AppleScript “thinks” and how
TextWrangler’s particular AppleScript implementation behaves.

In addition to the basic AppleScript documentation included with the system, you may find
the following resources useful in your quest to understand scripting.

Books
AppleScript: The Definitive Guide (Second Edition), Matt Neuberg. O’Reilly and
Associates, 2006. ISBN: 0-596-10211-9

Discussion Groups

AppleScript Users
http://www.lists.apple.com/applescript-users.html
Official mailing list run by Apple for AppleScript users.

TextWrangler Talk
 http://groups.google.com/group/textwrangler
The TextWrangler Talk discussion group is an excellent place to ask TextWrangler-specific
scripting questions.

Mac Scripting
http://listserv.dartmouth.edu/scripts/wa.exe?A0=MACSCRPT
Unofficial list covers AppleScript and other Macintosh scripting languages, with
occasional forays into peripheral topics.

Web Sites

AppleScript: The Language of Automation
http://www.macosxautomation.com/applescript/
An excellent starting point.

AppleScript — Apple Developer Connection
http://developer.apple.com/AppleScript/
Detailed information for developers and advanced users.

MacScripter.Net
http://macscripter.net/
A good selection of AppleScript-related news and topics, including the “AppleScript FAQ”
and discussion forums.
202 Chapter 11: Scripting TextWrangler

http://www.lists.apple.com/applescript-users.html
http://groups.google.com/group/bbedit
http://listserv.dartmouth.edu/scripts/wa.exe?A0=MACSCRPT
http://www.macosxautomation.com/applescript/

http://www.oreilly.com/catalog/applescpttdg/index.html
http://macscripter.net/
http://www.oreilly.com/catalog/aplscptian/
http://developer.apple.com/AppleScript/

ScriptWeb
http://www.scriptweb.com/
This site covers all scripting languages, not just AppleScript. Also, it has an extensive
directory of scripting additions.

Software

Script Debugger
http://www.latenightsw.com/
Despite its name, Script Debugger is more than a debugger; it is actually an enhanced
replacement for Apple’s Script Editor, featuring variable monitoring, step/trace debugging,
an object browser for an application’s objects, and much more.

Using AppleScripts in TextWrangler
TextWrangler has been scriptable for years, and we have continually worked to refine its
level of scripting support. In addition to providing extensive script access to its commands
and data, TextWrangler is both attachable and recordable.

This section describes how you can create and employ AppleScripts within TextWrangler
via recording and TextWrangler’s various scripting facilities, while the following section
covers TextWrangler’s scripting commands and other issues related to preparing scripts for
use.

Recording Actions within TextWrangler
Any language is easier to read than to write, easier to understand than to speak. AppleScript
is no different. That’s because, even though all the commands it uses are English words
arranged in ways that more or less make grammatical sense, you still have to know (or find
out from the application’s dictionary) exactly which words to use, and what order they
should go in. But it is easy to get started making scripts by recording them.

First, launch both TextWrangler and the Script Editor.
Using AppleScripts in TextWrangler 203

http://www.scriptweb.com/
http://www.latenightsw.com/

When you launch the Script Editor, a new, blank script window appears. Click the Record
button, circled in the illustration below.

Now switch to TextWrangler and perform your task. Remember that the Script Editor is
recording everything you do in every recordable application you are running, not just
TextWrangler. If you do something in the Finder, for instance, that will get recorded too.
Since almost everything you do is recorded, remember that if you make an error, and then
Undo it, your recorded script will faithfully make the same mistake and undo it when you
run it later. It will be possible to fix minor errors later, but things always go more smoothly
if you do not make any mistakes, so take your time and try to do it right the first time.

Now switch back to the Script Editor and click the Stop button. After a brief pause, your
script is compiled and ready for use. Try clicking the Run button to see it work. (It might
not work correctly. If you recorded a search and replace operation changing every “cat” to
“dog”, you already changed the document while recording the script, and of course the
script will not do anything when you run it.)

Finally, save the script in the TextWrangler Scripts folder so that it shows up in
TextWrangler’s script menu. Choose Save As from the File menu, and then use the Script
Editor’s Save dialog to put the script in TextWrangler’s Scripts folder. Now try selecting it
from the script menu in TextWrangler.

The Scripts Menu
The Scripts menu (left) in TextWrangler’s menu bar contains several commands. It also
lists all AppleScripts (as well as text factories and Unix scripts) present in the Scripts folder
within TextWrangler’s application support folder, providing a quick way to access
frequently used scripts. You can place scripts within subfolders (up to 4 levels deep) of the
Scripts folder to organize them.

Note AppleScripts written for use in as TextWrangler filters or scripts should be saved as
compiled (data fork) script files, not script applications.

In addition to the list of available scripts, the Scripts menu provides the following
commands.
204 Chapter 11: Scripting TextWrangler

Open Script Editor
Choose this item to switch to the system’s default AppleScript editor. If the script editor is
not running, TextWrangler launches it.

Open Scripting Dictionary
Choose this item to switch to your preferred AppleScript editor and open TextWrangler’s
scripting dictionary for viewing. If the script editor is not running, TextWrangler launches
it.

Open Scripts Folder
Choose this item to open the Scripts folder which is located within TextWrangler’s
application support folder. (See “Scripts” on page 28.)

Start Recording
Select this item to record all available actions that you perform within TextWrangler (or
any other recordable applications which you switch to). When this command is active, the
menu item will change to Stop Recording, and a tape icon will flash over the Apple menu.
When you choose Stop Recording, TextWrangler will display a Save dialog which allows
you to save a script file containing the recorded actions.

Running and Editing Scripts
Choose the item corresponding to any script to run that script. Hold down the Option key
when choosing a script item to have TextWrangler open the script for editing in your
preferred script editor, or hold down the Shift key when choosing a script item to have
TextWrangler reveal the script file in the Finder. If you choose a folder node rather than a
script item, TextWrangler will open the corresponding folder in the Finder.

The Scripts Palette
The Scripts command, located in the Palettes submenu of the Window menu, opens a
palette listing all available scripts. Names that are too long to fit within the width of the
window are truncated with ellipses (…).

“Hovering” the mouse over such a truncated name displays a tool tip showing the full
name. If you hold down the Option key, the tool tip will appear instantly, with no hovering
delay. Names that fit entirely within the window without truncation do not display a tool
tip.

Organizing Scripts
Items in the Scripts menu or Scripts window are displayed in alphabetical order by default,
but you can force them to appear in any desired order by including any two characters
followed by a right parenthesis at the beginning of their name. (For example “00)Save All”
would sort before “01)Close All.”) For names of this form, the first three characters are not
displayed in the window. You can also insert a divider by including an empty folder whose
name ends with the string “-***”. (The folder can be named anything, so it sorts where
you want it.) These conventions are the same as those used by the utilities FinderPop and
OtherMenu.
Using AppleScripts in TextWrangler 205

Attaching Scripts to Menu Items
TextWrangler lets you attach scripts to menu items. By this, we mean that you can write
scripts that TextWrangler automatically calls before or after performing a menu command.
For example, if you want TextWrangler’s Open from FTP/SFTP Server command to launch
your favorite FTP client, you can simply attach a script to that menu item. Scripts can
return a value that tells TextWrangler whether to continue with the command that was
selected, or to cancel the operation (in which case only the script is executed).

Scripts attached to TextWrangler menu items must be stored in the Menu Scripts folder of
TextWrangler’s application support folder. These files should be compiled scripts, not
script applications. Scripts are named to indicate which menu item they go with: first the
name of the menu (or the submenu) upon which the item is immediately located, then a
bullet “•” (Option-8) character, then the name of the menu item. For example, to attach a
script to the Open from FTP/SFTP Server menu item, you would name it “File•Open from
FTP/SFTP Server”, while to attach a script to the New Document menu item, you would
name it “New•Text Document”.

Two of TextWrangler’s menus have icons rather than names. TextWrangler uses the
following names for its icon menus: “#!” [the ‘Shebang’ menu], and “Scripts”.
Furthermore, the New With Stationery submenu is named “Stationery” for purposes of
attachability.

When you choose a menu command which has an attached script, TextWrangler will pass
the menu name and command (item) name to the script’s MenuSelect handler, if it has one.
If the script contains no MenuSelect handler, TextWrangler executes the script’s run
handler.

The script’s MenuSelect handler can tell TextWrangler to skip performing the chosen
command by returning “true”, or have it continue on and perform the command by
returning “false”. If MenuSelect returns “false”, TextWrangler will call the script’s
PostMenuSelect handler, if it has one, after it performs the menu command.
206 Chapter 11: Scripting TextWrangler

Here is a simple example, which adds a confirmation dialog to the Save command
(addressed as “File•Save”). Note that we test the menu and item names to make sure the
script is attached to the Save command—if it is attached to some other command, it does
nothing.

on menuselect(menuName, itemName)
if menuName = "File" and itemName = "Save" then
set weHandledCommand to true
display dialog "Are you sure you want to save?" ¬
buttons {"No", "Save"} default button 2
if button returned of the result is "Save" then
-- the application should do its work
set weHandledCommand to false
else
-- we handled the command, app does no work,
-- postmenuselect doesn't get called
display dialog "The document was not saved." ¬
buttons {"OK"} default button 1

end if
return weHandledCommand

end if
end menuselect

on postmenuselect(menuName, itemName)
-- this is called after the application has processed
-- the command
display dialog "The document was saved." ¬
buttons {"OK"} default button 1

end postmenuselect

Attaching Scripts to Events
IMPORTANT TextWrangler now offers enhanced script attachability: in addition to adding scripts to

menu commands, you can now attach scripts to certain application and document events.

To access these events, your attachment scripts must contain function names which
correspond to the names of the events’ attachment points. Except when otherwise noted, all
of the following considerations apply:

• Every function takes a single argument which is a reference to the object in
question: the application for application entry points, or the document being
opened/closed/saved/etc for document entry points.

• Any function associated with an attachment point whose name contains ‘should’
must return a Boolean result: ‘true’ or ‘false’. If it returns ‘true’, the operation will
continue. If it returns ‘false’ or throws an error (see below) then the operation will
be cancelled. So, for example, ‘applicationShouldQuit’ returning ‘true’ will allow
the application to quit; returning ‘false’ will not.

• If an attachment script causes a scripting error and does not handle it within the
script itself, TextWrangler will report the error. In the case of functions which are
used to allow a ‘should’ action, this will prevent the action from occurring.

Here are the available attachment points:
Using AppleScripts in TextWrangler 207

Application attachment points
• applicationDidFinishLaunching: called when the application has completed

startup.

• applicationShouldQuit: called when you choose the Quit (or the application
receives a ‘quit’ event for any other reason).

• applicationDidQuit: called when the application has finished shutting down and is
about to exit.

Document attachment points
• documentDidOpen: called when a document has been opened and is ready for use.

(Since TextWrangler supports multiple types of documents, your script should
allow for the argument to be a document of any type.)

• documentShouldClose: called when the application is preparing to close a
document.

• documentDidClose: called when the application has closed a document.

•

• documentShouldSave: called when the application is trying to determine whether a
given document should be saved.

• documentWillSave: called when the application is about to begin saving a
document. (note that this will only be called after a successful return from a
‘documentShouldSave’.

• documentDidSave: called after a document has been saved successfully.

• documentWillUnlock: called when TextWrangler is going to make a document
writeable. (For example, when you click the pencil to unlock a document)

• documentDidUnlock: called when TextWrangler has successfully made a
document writeable.

• documentWillLock: called when TextWrangler is going to make a document read-
only.

• documentDidLock: called when TextWrangler has successfully made a document
read-only.

Using Attachment Scripts
Scripts attached to events must be stored in the “Attachment Scripts” folder of
TextWrangler’s application support folder (see page 26).

You can write one script to handle each attachment point, or one script to handle the
attachment points for an entire class of objects, or one script to handle all of the attachment
points for the entire application.

You can also mix and match scripts to meet specialized needs: for instance, by using one
script to implement a particular attachment point for documents, and a second script to
handle the remaining attachment points.
208 Chapter 11: Scripting TextWrangler

TextWrangler associates scripts to attachment points by means of the script’s file name.
There are three ways to specify a script’s role:

1 <ObjectClass>.<entryPoint>

2 <ObjectClass>

3 <ApplicationName>

The first form is the most specific: the ‘ObjectClass’ may be either “Application” or
“Document”, while the ‘entryPoint’ is one of the attachment points described above
appropriate to that object class.

For example, a script which implemented only the documentDidSave attachment point
should have the name “Document.documentDidSave.scpt” and contain a subroutine named
‘documentDidSave’, thus:

on documentDidSave

-- do something useful and appropriate

end documentDidSave

Note Adding the filename suffix ‘.scpt’ is not mandatory, but you should follow the current
system conventions suggested when creating scripts with the AppleScript Editor (or
any other script editor such as Script Debugger).

The second form allows you to implement all of the attachment points for a single object
class in a single script file, if desired.

For example, you could create a script named “Application.scpt” containing subroutines for
as many of the application attachment points as you wish:

on applicationDidFinishLaunching

-- do something relevant

end applicationDidFinishLaunching

on applicationShouldQuit

-- hello world

return (current date as string contains “day”)

end applicationShouldQuit
Using AppleScripts in TextWrangler 209

Likewise, to implement all of the attachment points for the Document class, you could
create a script named “Document.scpt”, and put subroutines in it for the document
attachment points:

on documentDidSave

-- do something relevant

end documentDidSave

...

on documentWillClose

...

end documentWillClose

The third form allows you to write a single all-encompassing script which contains
subroutines for all of the attachment points in the application. To do this, name the script
“TextWrangler.scpt” and include whatever subroutines you wish to implement. For
example:

on applicationShouldQuit

-- hello world

return (current date as string contains “day”)

end applicationShouldQuit

on documentWillClose

...

end documentWillClose

When figuring out which script to run, TextWrangler will first look for a script whose name
exactly matches the attachment point, e.g. “Document.documentShouldSave.scpt”. If there
is no such script, TextWrangler will then look for a script whose name matches the object
class at the attachment point, e.g. “Document.scpt”. Finally, if there are no scripts with
either an exact or a class match, TextWrangler will look for an application-wide script:
“TextWrangler.scpt”.

Note You do not have to implement attachment subroutines for all attachment points, or
for all classes—only the ones you need. If there is no attachment script or subroutine,
TextWrangler proceeds normally.
210 Chapter 11: Scripting TextWrangler

Using an Attachment Script to Perform Authenticated Saves
TextWrangler 4.0 supports a special attachment point for the Document class:
documentShouldFinalizeAuthenticatedSave. This attachment point will be called whenever
an authenticated save is necessary (for text documents only).

The following sample script illustrates how to use this facility (the comments are
important, so please read them!):

on documentShouldFinalizeAuthenticatedSave(theDocument,
tempFilePath, destinationPath)

-- on input: tempFilePath points to the contents
-- of the document written to a temp file, ready
-- to move to the destination; destinationPath is
-- where the file should be copied.

-- on exit: if the operation succeeded, delete the
-- temp file (or else the application will assume
-- the operation failed) and return YES for success

-- this is pretty straightforward:
-- "cp tmpFilePath destinationPath"

do shell script "cp" & " " & quoted form of tempFilePath
& " " & quoted form of destinationPath with administrator
privileges

-- now remove the temp file, this indicates to
-- the application that we did the work

 do shell script "rm" & " " & quoted form of tempFilePath

return true

end documentShouldFinalizeAuthenticatedSave

Filtering Text with AppleScripts
The Text Filters folder in TextWrangler’s application support folder contains executable
items, such as compiled AppleScripts, Automator workflows, and Unix filters, which you
may apply to the active document via the Apply Text Filter command in the Text menu.

When you apply such an item, TextWrangler will pass either the selected text (or the
contents of the active document, if there is no selection) as a reference to a
‘RunFromTextWrangler’ entry point within your AppleScript, and your script should
return a string which TextWrangler will use to replace the selected text (or the contents of
the document). If your script does not contain a ‘RunFromTextWrangler’ entry point,
TextWrangler will call its run handler, again passing a reference to the current selection
range.
Using AppleScripts in TextWrangler 211

TextWrangler’s Scripting Model
This section provides a high-level overview of TextWrangler’s scripting model that will,
where appropriate, contrast the current scripting framework against older versions of
TextWrangler, and suggest how you can modify your existing scripts for compatibility.

IMPORTANT Because TextWrangler’s scripting dictionary changes whenever we add features, it should
be considered the definitive reference in any situation where it and this document differ. We
have found Script Debugger from Late Night Software to be an excellent tool for browsing
and navigating TextWrangler’s scripting dictionary, as well as for preparing and testing
scripts.

http://www.latenightsw.com/

Script Compatibility
Scripts prepared for older versions may need to be revised in order to work properly.
Further, since TextWrangler now allows multiple documents to be open within a single text
window, you may need to revise other existing scripts.

Distinguishing Between Script Elements
Because different applications handle different types of data, you should be aware that the
actual data, or the interface items, referred to by a particular name may not be consistent
from application to application. The following sections describe how several common
elements are handled in TextWrangler.

Applying Commands to Text
Since TextWrangler supports opening multiple documents within a single text window, all
scripting commands which operate on text must specifically target the text contents of a
window, or a document within that window, rather than the window itself.

For example, you may use:

count lines of text of document of text window 1

or:

count lines of active document of text window 1

but not:

count lines of text window 1

Documents vs. Windows
In old versions of TextWrangler, the object classes document and window could be used
interchangeably, and generally had the same properties listed in the scripting dictionary.
This is no longer the case.

The class window now corresponds to a window (of any type—text or otherwise) on
screen, and thus the properties of the window class now refer strictly to properties of a
window on screen. If a document is associated with a window, the document is accessed as
the document property of the window:

document of text window 1
212 Chapter 11: Scripting TextWrangler

http://www.latenightsw.com/
http://www.latenightsw.com/

The class document refers to a document, and as with a window, the document’s properties
pertain strictly to the condition of a document (that is, something that can be saved to disk
and opened later). Note that this does not mean a document must be saved to a file, only
that it could be.

As a rule, documents and windows are associated with each other, but it is important to
remember that there is not a one-to-one correspondence between windows and documents.
For example, the About box is a window which has no document associated with it.
Furthermore, in current versions of the application, there is no such thing as a document
with no associated window.

Here is a general overview of the object classes used in TextWrangler:

Classes of Windows

• window: the basic window class contains properties that can be fetched and set for
any window on screen: position, size, and so forth.

• palette: the palette class refers to windows that float above all others on the screen;
the HTML tools palette, scripts list, and so on.

• text window: the text window class provides properties which are specific to text-
editing windows as on-screen entities. These properties pertain mostly to the
display of text in the window: show invisibles, auto_indent, and so on. In addition
to the text-editing-specific properties, the basic window properties are also
accessible.

• disk browser window: provides a way to reference windows corresponding to open
disk browsers. A disk browser window does not present any properties beyond the
basic window class, but provides a way to differentiate disk browser windows from
other types of window.

• results browser: provides a way to reference results generated by a batch
operation. A results browser does not present any properties beyond the basic
window class, but provides a way to differentiate results windows from other types
of window.

• search results browser: a subclass of results browser, referringspecifically to the
results of a single-file Find All command or a multi-file search.

Classes of Document
As with windows, there are various classes of document:

• document: the basic document class contains properties that apply to any sort of
document: whether it has unsaved changes, the alias to the file on disk, and so on.

• text document: text documents contain information specific to text files opened for
editing in TextWrangler.

• picture document: refers to a document corresponding to an open picture file. A
picture document does not present any properties beyond the basic document class,
but provides a way to differentiate picture documents from other types of
document.
TextWrangler’s Scripting Model 213

• movie document: refers to a document corresponding to an open QuickTime movie
file. A movie document does not present any properties beyond the basic
“document” class, but provides a way to differentiate movie documents from other
types of document.

• QuickTime document: refers to a document corresponding to an imported
Quicktime image file. A QuickTime document does not present any properties
beyond the basic “document” class, but provides a way to differentiate QuickTime
documents from other types of documents.

“Lines” and “Display_lines”
The “line” element refers to a “hard” line, that is, a stream of characters that begins at the
start of file or after a line break, and which ends at the end of file or immediately before a
line break. This is consistent with the previous semantics of “line” in hard-wrapped
documents, and these semantics now apply in soft-wrapped documents as well.

The “display_line” element refers to a line of text as displayed on screen (bounded by soft
and/or hard line breaks).

The “startLine” and “endLine” properties of a text object now always refer to the “hard”
start and end of lines. In other words, if a text object crosses multiple soft-wrapped lines,
the startLine and endLine properties will be the same.

Both “startDisplayLine” and “endDisplayLine” properties are now part of the text object
class. These serve the same purpose as the startLine and endLine semantics for soft-
wrapped views in older versions of TextWrangler.

Getting and Setting Properties
A significant feature of TextWrangler’s scripting framework is the ability to get and set
multiple properties of an object with a single scripting command. Every object has a
property called properties. This property returns a record which contains all of the
properties which can be fetched for that object. For example, the script command

properties of text window 1

will return a result like this one:

{{id:55632400, container:application "TextWrangler", bounds:{31,
44, 543, 964}, closeable:true, collapsed:false, index:1,
modal:false, file:alias "Hard
Disk:Users:Shared:doc_examples:index copy.html", modified:false,
name:"index copy.html", position:{31, 44}, resizable:true,
selection:"", contents:"..."}

Conversely, to set one or more properties at once is very easy:

set properties of text window 1 to { show invisibles: true, show
spaces : true, soft wrap text : true }

Only the properties specified will be changed. The rest will not be modified.
214 Chapter 11: Scripting TextWrangler

It is important to note that when setting properties in this fashion, you can only set
modifiable properties. If you attempt to set any read-only properties, a scripting error will
result:

set properties of text window 1 to { show invisibles: true,
modal: false, expand tabs: true }

The above script command will turn on Show Invisibles and then report a scripting error,
since modal is a read-only property.

Performing Actions
The following sections provide basic information on how to perform various common
actions via AppleScript.

Scripting Searches
The ability to script searches presents you with a very powerful tool, since you can prepare
a script which instructs TextWrangler to perform a whole series of search or search and
replace operations.

Consider the scripting command below:

tell application "TextWrangler"

find "TextWrangler(.+)$" searching in document of text window 1
¬
 options { search mode: Grep } with selecting match

end tell

In previous versions, the find command always operated on the front window. Now, you
must explicitly specify the text to be searched, either by specifying an explicit tell target, or
by supplying a searching in parameter. So the following scripts are equivalent:

tell application "TextWrangler"
 find "TextWrangler" searching in document of text window 1
end tell

and

tell application "TextWrangler"
 tell document of text window 1
 find "TextWrangler"
 end tell
end tell

Note that either the tell-target or the searching in parameter must resolve to something that
contains text. As a shortcut, you can specify a window, and if the window contains text, the
search can proceed. You can also specify a text object:

find "Search Text" searching in (lines 3 thru 5 of document of
text window 2)

Also unlike previous versions of TextWrangler, the defaults for parameters not specified in
the find command are no longer controlled by the user interface (that is, the Find window).
TextWrangler’s Scripting Model 215

When performing a find, TextWrangler will return a record describing the results of the
search. This record contains a Boolean which indicates whether the search was successful,
a reference to the text matched by the search, and the text string matched by the search.
Given the first example above, the results might look like this (after reformatting for
clarity):

{found:true,
found object:characters 55 thru 60 of text window 1 of
application "TextWrangler",
found text:"TextWrangler"}

Scripting Single Replaces
To do a single find and replace via AppleScript, you can write:

tell application "TextWrangler"

set result to (find "TextWrangler" searching in text window 1¬
 with selecting match)

 if (found of result) then
 set text of (found object of result) to "Replacement"
 end if

end tell

When performing a grep search, you cannot just replace the matched pattern with a
replacement string; the grep subsystem needs to compute the substitutions. The grep
substitution event is provided for this purpose; given a preceding successful Grep search, it
will return the appropriate replacement string. So if you perform a grep search, the script
would look like:

tell application "TextWrangler"

set result to find "TextWrangler(.+)$" searching in text window
1 ¬
 options {search mode:grep}

 if (found of result) then
 set text of (found object of result) to ¬
 grep substitution of "\\1"
 end if

end tell

Note that when using a backslash “\” character in AppleScript, it needs to be “escaped” by
means of another backslash; thus, in the above example, “\\1” used in the script, will
become the grep replacement string “\1” when passed to TextWrangler.

Scripting Multi-File Searches
In TextWrangler, a multi-file search is a simple extension of the find scripting command.
To search a single file or folder for all occurrences matching the search parameters, specify
the file or folder as the searching in parameter of the search.
216 Chapter 11: Scripting TextWrangler

For example, to find all occurrences of “index.html” in a web site, one might use the
following scripting command:

find "index.html" searching in (alias "Files:WebSite:")

Likewise, to find JavaScript line comments:

find "//.+$" searching in (alias "Files:WebSite:") ¬
 options {search mode: Grep}

To search in a single file:

find "crash" searching in (alias "Files:WebSite:index.html")

Scripting the Clipboard
TextWrangler has multiple clipboards. These are fully accessible via the scripting interface.
Due to operating system constraints, most clipboard operations require TextWrangler to be
frontmost.

Here are some examples:

count clipboard

• Returns the number of clipboards supported by the application

clipboard 1

• Returns {index:1, contents:"Files:WebSite:", length:14, is multibyte:false, display
font:"ProFont", display font size:9, style:{plain}}

clipboard 1 as text

• Returns "Files:WebSite:"

clipboard 1 as reference

• Returns clipboard 1 of application "TextWrangler"

current clipboard

• Returns the current clipboard as a record (you can coerce it to reference or text or
get individual properties)

To set the text in a given clipboard to literal text:

set contents of clipboard 3 to "foobar"

To set the text in a clipboard to text represented by an object specifier:

set contents of clipboard 3 to selection of window 2

To copy the contents of one clipboard to another:

set contents of clipboard 5 to clipboard 3

or, to set the current clipboard to the contents of a different clipboard, (thus making it
exportable to the system clipboard):

set current clipboard to clipboard 3 as text
TextWrangler’s Scripting Model 217

or finally, with even less typing involved:

set current clipboard to clipboard 5

To make any clipboard the current clipboard, select it:

select clipboard 5

Setting Text Encodings
When specifying the encoding to use for opening or saving a file, you may either use the
encoding’s internet name, or its exact display name (as shown in the Read As popup menu).

For example:

open {file "Hard Disk:Users:Shared:example.txt"} reading as
"Western (ISO Latin 1)"

open {file "Hard Disk:Users:Shared:example.txt"} reading as
"iso-8859-1"

Arranging Documents and Windows
TextWrangler provides considerable control for handling windows and documents both
directly and via AppleScript.

Opening Documents
The “open” command supports additional options, which allow you to override your
window handling preferences on a case by case basis:

open aFileList opening in <value>

As in previous releases, <value> may be a reference to an existing text window. However,
you may instead specify “front_window”, “new_window”, or “separate_windows”, which
have the following effect:

• front_window: All files in aFileList are opened in the frontmost text window. (If
there is no text window open, TextWrangler will create a new one.)

• new_window: All files in aFileList are opened into a new text window.

• separate_windows: Each file in aFileList is opened into its own text window.
218 Chapter 11: Scripting TextWrangler

Moving Documents
The “move” command can be used to move text documents between text windows. For
example:

tell application "TextWrangler"
 if (count of text windows) > 0 then
 select text window 1
 repeat while (count of text windows) > 1
 set ct to count documents of text window 2
 repeat with i from 1 to ct
 move document 1 of text window 2 to text window 1
 end repeat
 end repeat
 else
 beep
 end if
end tell

Referencing Documents
Previously, documents were indexed inside of multi-document windows by their display
order in the file list. This meant that “document 1” of the application might not be the
active document, which in turn required scripts to make special provisions to deal with the
presence of multiple documents in a single window.

In order to handle this, TextWrangler 2.0 provided the “active document” property, which
you could always use to specify the currently active document of a given text window. For
example:

active document of text window 1 of application “TextWrangler”

Although TextWrangler still supports the “active document” property, this is no longer
necessary. Instead, if a text window is frontmost:

document 1 of application "TextWrangler"

document 1 of text window 1 of application "TextWrangler"

active document of text window 1 of application "TextWrangler"

now all refer to the same document. The side effect of this change is that if you wish to
access documents within a text window by index, that index is:

a) not related to the visual ordering of documents in the file list, and,

b) documents’ indexes may change over time

This situation is effectively no different than handling documents which are contained in
individual text windows, i.e. the index will change over time when you select different
windows. If your script needs to keep a permanent references to a particular document, you
should refer to that document by its id rather than its index.
TextWrangler’s Scripting Model 219

Common AppleScript Pitfalls
Here are some things to watch out for when scripting TextWrangler with AppleScript.

The Escape Issue
AppleScript uses the backslash character as an escape character. You can use \r to indicate a
carriage return or \t to indicate a tab character. More importantly, you can use \" or \' to
include a quote mark or apostrophe in a string that is delimited by quotes or apostrophes. If
you want to specify a real backslash, you must write \\.

That’s not all that confusing until you start writing AppleScripts that call on
TextWrangler’s powerful grep searching capability. TextWrangler also uses the backslash
as an escape character. If you want to search for an actual backslash in a document, you
have to tell TextWrangler to search for \\. However, if you do that in AppleScript, you must
keep in mind that AppleScript will first interpret the backslashes before passing them to
TextWrangler. To pass one backslash to TextWrangler from AppleScript, you must write
two in AppleScript.

So to tell TextWrangler to search for a single literal backslash from an AppleScript, you
must write no fewer than four backslashes in the script. Each pair of backslashes is
interpreted as a single backslash by AppleScript, which then passes two backslashes to
TextWrangler. And TextWrangler interprets those two backslashes as a single one for
search purposes. (This proliferation of backslashes can make your scripts look a bit like a
blown-over picket fence.)

The Every Item Issue
When writing a script that loops through every item of a TextWrangler object (for example,
every line of a document), do not do it like this:

repeat with i in every line of text document 1
-- do stuff here...

end repeat

This forces TextWrangler to evaluate “every line of document 1” every time through the
loop, which will slow your script significantly. Instead, write

set theLines to every line of text document 1
repeat with i in theLines

-- do stuff here...
end repeat
220 Chapter 11: Scripting TextWrangler

C H A P T E R

12
Unix Scripting and the
Command-Line
This chapter describes how to set up TextWrangler to work with development
environments. TextWrangler offers multiple features which support development
tasks, beginning with syntax coloring and function browsing support for
numerous languages, and continuing to direct integration with the system-
supplied Perl, Python, and Ruby environments, as well as shell scripts and other
Unix scripting tools. Additionally, you can invoke TextWrangler from the
command line via its optional command line tools.

In this chapter
Configuring TextWrangler . 221

Syntax Coloring – 221 • Switching Between Counterpart Files – 222
TextWrangler and the Unix Command Line . 222

Installing the Command Line Tools – 222
The “edit” Command Line Tool – 222
The “twdiff” Command Line Tool – 223
The “twfind” Command Line Tool – 223

Unix Scripting: Perl, Python, Ruby, Shells, and more! . 225
Using Unix Scripts – 225 • Language Resources – 225
Line Endings, Permissions and Unix Scripts – 226
Configuring Perl – 227 • Configuring Python – 227
Configuring Ruby – 227 • Shebang Menu – 227
Filters and Scripts – 229 • Filters – 229 • Scripts – 230
Additional Notes – 230

Configuring TextWrangler
The Shebang (#!) menu is always available by default to provide you access to
TextWrangler’s support for running Unix scripts.

Syntax Coloring
Syntax coloring is the practice of drawing keywords and other language elements
in colors which differ from the standard text color to add emphasis and improve
the readability of your code. TextWrangler offers built-in syntax coloring support
for a wide range of programming languages and other types of structured content.
You can adjust TextWrangler’s default text colors or define color schemes in the
Text Colors preference panel, or assign a color scheme to a specific language in
the Languages preference panel.
221

Switching Between Counterpart Files
When editing any source file which has a counterpart (header), you can press the
Counterpart button in the navigation bar or type Control-Option-up arrow to switch to its
counterpart file, or vice versa. (TextWrangler uses the suffix mapping options in the
Languages preference panel to determine whether a particular file is a source or header
file.)

TextWrangler and the Unix
Command Line
This section describes TextWrangler’s facilities for interacting with the Unix command
line: shell worksheets for issuing commands to the Unix shell and the “edit”, “twdiff”, and
“twfind” command line tools for invoking TextWrangler from the command line.

Installing the Command Line Tools
The first time you run TextWrangler after installation, it will offer to install the “edit”,
“twdiff”, and “twfind” command line tools for you. If you choose not to do so, you can
choose “Install Command Line Tools” from the TextWrangler (application) menu at any
time to install (or re-install) the current version of each command line tool.

If older versions of the tools are installed, choosing this command will update them; it will
not overwrite existing versions of the tools with older versions.

The “edit” Command Line Tool
You can use the “edit” command line tool to open files into TextWrangler via the Unix
command line.

To open a file into TextWrangler from the command line, type

edit filename

where filename is the name of the file to be opened. You may also specify a complete FTP
or SFTP URL to a remote file or folder to have TextWrangler open the file, or an FTP/
SFTP browser to the folder.

To launch TextWrangler without opening a file (or to activate the application if it is already
running), type

edit -l

You can also pipe STDIN to the “edit” tool, and it will open in a new untitled window in
TextWrangler: for example,

ls -la | edit

If you just type

edit

with no parameters, the tool will accept STDIN from the terminal; type Control-D (end-of-
file) to terminate and send it to TextWrangler.
222 Chapter 12: Unix Scripting and the Command-Line

The complete command line syntax for the “edit” tool is

edit [-bcChlpsuvVw --resume] [-e <encoding_name>]
 [-t <string>] [+<n>] [file (or) <S/FTP URL> ...]

See the “edit” tool’s man page (“man edit”) for a complete description of the available
switches and options.

The “twdiff” Command Line Tool
You can use the “twdiff” command line tool to apply TextWrangler’s Find Differences
command to a pair of files or folders specified on the Unix command line.

To invoke the Find Differences command from the command line, type

twdiff oldfile newfile

or

twdiff oldfolder newfolder

where oldfile and newfile are the names of the files, or oldfolder and newfolder are the
names of the folders, to be compared. You can also specify options for how the Find
Differences command will be applied, which correspond to those available in the dialog.

The complete command line syntax for the “twdiff” tool is

twdiff [--<options>] [OLDFILE NEWFILE | OLDFOLDER NEWFOLDER
]

See the “twdiff” tool’s man page (“man twdiff”) for a complete description of the available
switches and options.

Invoking “twdiff” as an External Helper
When using “twdiff” as an external diff helper for any other program, e.g. Subversion, you
should invoke it with the --wait option.

The “twfind” Command Line Tool
You can use the “twfind” command line tool to access TextWrangler’s powerful multi-file
search from the Unix command line.

To perform a multi-file search from the command line, type

twfind search-string search-path

where search-string is your search string (or pattern) and search-path is a list of path(s) to
search. You can also specify options which control how the search should be performed;
these options correspond to those available in the Multi-File Search window.

If no search paths are specified on the command line, “twfind” will attempt to read them
from standard input. This makes it easy to process the output of other tools such as “find”.
For example:

`find . -name "*.py" -print | twfind blah`

takes the paths printed by “find” and searches those files.
TextWrangler and the Unix Command Line 223

By default, “twfind” expects that input will be separated by Unix newlines (\n). If instead,
the input is being generated programmatically and contains “NUL”-separated paths, you
can specify the “-0” option. Again using “find” as an example input source:

`find . -name "*.py" -print0 | twfind blah -0`

The complete command line syntax for the “twfind” tool is

twfind search-string [-cEghInRSvVwZ0 --<long_form_switches>
search-path]

See the “twfind” tool’s man page (“man twfind”) for a complete description of the
available switches and options.
224 Chapter 12: Unix Scripting and the Command-Line

Unix Scripting: Perl, Python, Ruby,
Shells, and more!
TextWrangler provides robust integration with numerous Unix scripting environments,
including Perl, Python, Ruby, and shell scripts.

Using Unix Scripts
TextWrangler works directly with the native Perl, Python, and Ruby environments
provided by Mac OS X, and supports similar integration with shell scripts and any other
Unix scripting language.

TextWrangler’s Unix scripting features are accessed via the Shebang menu: “#!”. (Why
“Shebang”? Because executable Unix scripts traditionally start with the two-character
sequence “#!”. Some people pronounce these two characters “hash-bang,” others say
“sharp-bang,” but the most common pronunciation is simply “shebang.”)

The “shebang line” is the first line of the script, and includes a Unix-style path to the
interpreter for the language—for example, “#!/usr/bin/perl”, or “#!/usr/local/bin/python”.

While TextWrangler does not entirely depend upon the accuracy of the shebang line (if
your script file has an accurate language mapping), it is always a good practice, and
sometimes necessary, to specify the full path to the executable in the shebang line.

Language Resources
Perl is an acronym for Practical Extraction and Report Language (or alternatively,
Pathologically Eclectic Rubbish Lister) and was developed by Larry Wall. If you are
interested in learning Perl, the quintessential Perl references are:

Learning Perl (4th Edition), by Randal L. Schwartz & Tom Phoenix.
O’Reilly and Associates, 2005. ISBN: 0-596-10105-8

Programming Perl (3rd Edition), by Larry Wall, Tom Christiansen, Jon Orwant. O’Reilly
and Associates, 2000. ISBN: 0-596-00027-8

The following are excellent Internet resources for the Macintosh implementation of Perl,
and Perl in general:

Perl.com from O’Reilly and Associates
http://www.perl.com/

Perl Mailing Lists
http://lists.cpan.org/

Python is a portable, interpreted, object-oriented programming language, originally
developed by Guido van Rossum. If you are interested in learning Python, consider the
following books:

Learning Python (2nd Edition), by Mark Lutz & David Ascher. O'Reilly and Associates,
2003.
ISBN: 0-596-00281-5
Unix Scripting: Perl, Python, Ruby, Shells, and more! 225

http://www.perl.com/
http://lists.perl.org/

Programming Python (2nd Edition), by Mark Lutz. O’Reilly and Associates, 2001.
ISBN: 0-596-00085-5

Internet resources for Python:

Python home page
http://www.python.org

Python Cookbook
http://aspn.activestate.com/ASPN/Cookbook/Python

Ruby is an interpreted scripting language with an emphasis on object-oriented
programming, which has fast become a favorite of Web developers. Ruby was created by
Yukihiro Matsumoto. If you are interested in learning Ruby, consider the following books:

Programming Ruby: The Pragmatic Programmer's Guide (2nd Edition), by Dave
Thomas, with Chad Fowler and Andy Hunt. Pragmatic Bookshelf, 2004.
ISBN: 0-9745140-5-5

Ruby Cookbook, by Lucas Carlson & Leonard Richardson. O’Reilly and Associates,
2006.
ISBN: 0-596-52369-6

Internet resources for Ruby:

Ruby home page
http://www.ruby-lang.org/

RubyGarden Wiki
http://wiki.rubygarden.org/Ruby

Setting Environment Variables for GUI Apps
In Mac OS X, the system maintains separate environments for CLI and GUI applications.
Thus, any changes you make within either environment will not affect the other.

Apple Technical Q&A 1067 describes the procedure necessary to set environment variables
for use within TextWrangler and other GUI applications.

http://developer.apple.com/qa/qa2001/qa1067.html

Note Please note you must log out and back into your account before the system will
register environment changes made via this mechanism.

Line Endings, Permissions and Unix Scripts
To execute scripts, the script interpreter for any given language requires source code to be
encoded with native line endings, i.e. Unix line breaks for Perl and most other shell
scripting languages. TextWrangler will warn you if you attempt to run a script which does
not have Unix line endings.

Additionally, to execute scripts anywhere outside of TextWrangler (e.g. in the Terminal),
the system requires that the script file have ‘execute’ permissions set. Thus, when you first
save any script file which contains a shebang (#!) line, TextWrangler will automatically set
execute permissions for your login account (a+x, as modified by the umask) on that file.
226 Chapter 12: Unix Scripting and the Command-Line

http://www.ruby-lang.org/
http://wiki.rubygarden.org/Ruby
http://developer.apple.com/qa/qa2001/qa1067.html
http://www.python.org
http://aspn.activestate.com/ASPN/Cookbook/Python

Configuring Perl
TextWrangler can make full use of the system’s default Perl install with no need for further
configuration. However, if you wish to install and work with multiple versions of Perl, you
will need to specify the appropriate version in your scripts’ shebang lines.

Search Paths
By default, Perl looks for modules in its standard library path and in the current directory.
You may also use modules from other locations by specifying their paths in the PERL5LIB
environment variable.

To do so, you must first create an “environment.plist” file as described under “Setting
Environment Variables for GUI Apps” on page 226, then add a key-value pair consisting of
the variable and the desired paths as follows:

<key>PERL5LIB</key>
<string>/Users/example/Sandbox/myPerlMods/:/Users/Shared/
moreMods/</string>

(You may specify multiple directories by separating their paths with colons per the standard
convention.)

Configuring Python
TextWrangler expects to find Python in /usr/bin, /usr/local/bin, or /sw/bin. If you have
installed Python elsewhere, you must create a symbolic link in /usr/local/bin pointing to
your copy of Python in order to use pydoc and the Python debugger.

Configuring Ruby
TextWrangler can make full use of the system’s default Ruby install with no need for
further configuration. However, if you wish to install and work with multiple versions of
Ruby, you will need to specify the appropriate version in your scripts’ shebang lines.

Shebang Menu
The commands in this menu allow you to run Unix scripts directly within TextWrangler.

Check Syntax
Checks the syntax for the frontmost window. Errors are displayed in a standard
TextWrangler error browser (see Chapter 9, “Browsers,” for more details on working with
error browsers). This command is only available for Perl and Python scripts.

Run
Runs the script in the frontmost window by default. Any output from the script is displayed
in a new TextWrangler window. The output window is titled “Unix Script Output”, and the
file is created in the Unix Support folder in TextWrangler’s application support folder. By
default, errors for Perl and Python scripts are displayed in an error browser; errors for other
languages are displayed as text in the output window.
Unix Scripting: Perl, Python, Ruby, Shells, and more! 227

Run...
Displays the Run a Script sheet, which allows you to set options before running the script in
the frontmost window.

Selection Only: Check this box to execute only the selected text in the frontmost document
window. This box is disabled if there’s no active selection.

Save Before Running: Check this box to save the source file before running the script.

Output to: Choose to display output in a new window, to direct it to the Unix Output file,
or to write it to a file in TextWrangler’s Logs folder (~/Library/Logs/TextWrangler/).

Use Debugger: Check this box to run Perl, Python, or Ruby scripts in the interpreter’s
debugger.

Run in Terminal: This command runs the script in a new Terminal window.

Chdir to Script’s Folder: Check this box to set the working directory to the folder that
contains the script before running it.

Output Options: Mark these checkboxes to clear the output file before writing and to save
it after writing, respectively.

Run in Terminal
This command will run the script in a new Terminal window, regardless of the settings in
the Run a Script dialog.

Run in Debugger
Runs the script in the interpreter’s debugger, regardless of whether the Use Debugger
option is set for the Run command; also, any output options set in the Run command will
be ignored. The Run in Debugger command is only available for Perl and Python.

Run File
Runs a script from an arbitrary file rather than from a TextWrangler window. The Run a
Script File dialog appears. You can select a file by clicking the File button or by dragging a
file to the path box at the top of the dialog from the Finder. The options are the same as the
ones described above for the Run a Script dialog.

Show POD/Show Module Documentation
When the frontmost document is a Perl file and you invoke the Show POD command,
TextWrangler will process the document contents using by the command line pod2text tool
and display the result in a new text window.

Note POD stands for Plain Old Documentation, and is the standard Perl documentation
format.
228 Chapter 12: Unix Scripting and the Command-Line

When the frontmost document is a Python file, the name of this command will change to
Show Module Documentation, and if you invoke it, TextWrangler will display the module
documentation.

Filters and Scripts
Before you begin using Unix filters and scripts with TextWrangler, you should locate and
familiarize yourself with the Text Filters and Scripts folders, which resides within
TextWrangler’s application support folder. (See Chapter 2 for details.).

The contents of the Text Filters and Scripts subfolders are presented respectively in the
Apply Text Filters submenu and the Scripts menu, as well as the Text Filters and Scripts
floating palettes.

Document State
For convenience, TextWrangler sets some runtime environment variables to provide
information about the front document’s state right before a Unix filter or script is run:

Note Selection ranges and other offsets are expressed in characters, not bytes.

Filters
Filters operate on the selected text of the frontmost document. TextWrangler will pass
either the selected text (if any) or the contents of the entire document as input to the filter on
STDIN and any output generated by the filter overwrites the selection.

Variable Description

BB_DOC_LANGUAGE Name of the document’s current language
(not set if language is "none")

BB_DOC_MODE Emacs mode of the document’s current
language

BB_DOC_NAME name of the document

BB_DOC_PATH path of the document (not set if the
document is unsaved)

BB_DOC_SELEND (zero-based) end of the selection range (not
set if not text document)

BB_DOC_SELEND_COLUM
N

(one-based) de-tabbed column number of
BB_DOC_SELEND

BB_DOC_SELEND_LINE (one-based) line number of
BB_DOC_SELEND

BB_DOC_SELSTART (zero-based) start of the selection range (not
set if not text document)

BB_DOC_SELSTART_COLU
MN

(one-based) de-tabbed column number of
BB_DOC_SELSTART

BB_DOC_SELSTART_LINE (one-based) line number of
BB_DOC_SELSTART
Unix Scripting: Perl, Python, Ruby, Shells, and more! 229

Note This method represents a change from versions 3.5.3 and prior, in which TextWrangler
wrote a temporary file and passed it on ‘argv[0]`. Thus, if you have any existing Unix
filters (in the “Text Filters” folder), you will need to modify those filters in order for
them to continue working.

There are two ways to run filters: through the Apply Text Filters submenu in the Text menu
or via the Text Filters palette. To open the Text Filters palette, select it from the Palettes
submenu in the Window menu. You can run a filter by selecting it from the list and clicking
the Run button, or you can simply double-click the filter name in the list.

Hold down the Option key while double-clicking a filter or selecting it from the menu to
open the file for editing instead of running it. You can also hold down the Shift key while
selecting a filter item from the Apply Text Scripts submenu to reveal the file in the Finder,
or you can select a folder node from the menu to open that folder in the Finder.

Scripts
Scripts do not operate on the text of the frontmost window, but rather run directly. You can
run scripts from the Scripts menu or the Scripts palette. Hold down the Command key
while selecting or double-clicking a script to open the Run a Script options dialog; hold
down the Option key while selecting or double-clicking a script to open the script’s file for
editing instead of running it; hold down the Shift key while selecting or double-clicking a
script to reveal its file in the Finder (or while selecting a folder node, to reveal that node in
the Finder).

Additional Notes
In addition to the features detailed above, TextWrangler offers some additional options
which it may help you to be aware of.

Setting Menu Keys for Scripts
The Filters and Scripts palettes both have a “Set Key” button at the top. Select a filter or
script in the list and click this button to set a keyboard shortcut for the selected item. You
may also assign key equivalents to scripts or filters within the Menus & Shortcuts
preference panel.

Manually Sorting the Filter and Script Lists
By default, items in the Apply Text Filters submenu and the Scripts menu display in
alphabetical order. However, you can force items to appear in any desired order by
including any two characters followed by a right parenthesis at the beginning of their name.
(For example “00)Foo” would sort before “01)Bar.”) For such files, the first three
characters are not displayed in TextWrangler. You can also insert a divider by including an
empty folder whose name ends with the string “-***”. (The folder can be named anything,
so it sorts where you want it.)

Canceling Filter or Script Execution
You can press the Cancel button in the progress dialog or type Command-. (Command-
period) to cancel a task directly from within TextWrangler. Since TextWrangler must kill
the spawned Unix process with a SIGINT, any unflushed data in open filehandles
(including STDOUT and STDERR) will be lost unless the script takes measures to prevent
this.
230 Chapter 12: Unix Scripting and the Command-Line

Unix Scripting: Perl, Python, Ruby, Shells, and more! 231

232 Chapter 12: Unix Scripting and the Command-Line

C H A P T E R

13
Language Modules
Language modules are special files that you can install to add support for syntax
coloring, and optionally, function browsing, for programming languages beyond
those built in. Many people have prepared language modules for use with BBEdit
and TextWrangler, and these modules are available from various web sites
(including our own).

This chapter describes the basic procedures for installing and using language
modules, and provides references to information about producing such items.

In this chapter
Language Modules . 233

Installing Language Modules – 233
Overriding Existing Modules – 234
Codeless Language Modules – 234
Code-based Language Modules – 234
Language Module Compatibility – 234

Plug-In Obsolescence . 235

Language Modules
Language modules are add-on items which provide syntax coloring and function
browsing for programming languages that TextWrangler does not natively
support.

There are two types of language modules: coded, and codeless. Coded language
modules must be prepared according to the requirements of BBEdit’s language
module interface. (See Appendix C.) Codeless language modules are text
documents prepared in a specific plist format. (See below.)

After you install a language module and relaunch TextWrangler, syntax coloring
and function browsing will be available for the language(s) supported by that
module. To verify that a language module is active, or to modify or add file suffix
mappings for the language(s) it provides, use the Languages preference panel (see
page 183).

Installing Language Modules
To install a language module, move or copy the module file into the Language
Modules folder of your TextWrangler application support folder. If no such folder
exists, you may create it.

After installing a new language module, you must quit and relaunch
TextWrangler in order to use it.
233

To remove an installed language module, you must remove the item’s file from the
Language Modules subfolder of your TextWrangler application support folder, then quit
and relaunch TextWrangler.

Overriding Existing Modules
Language modules can override existing language definitions, including the built-in
definitions. If there is more than one module present which supports a given language,
TextWrangler will use the module with the most recent modification date.

Codeless Language Modules
A codeless language module is a specially-formatted text file which allows you to describe
the properties of a source code language via a set of basic parameters. TextWrangler will
then use these parameters to perform syntax coloring and function navigation for the
specified language.

Codeless language modules are written as “property lists” (or “plists”), which is anXML
format that Mac OS X uses for many purposes. You can create or edit codeless language
module files with TextWrangler itself, with the Mac OS X Property List Editor (located in /
Developer/Applications/Utilities/if you have installed the Apple Developer Tools
package), or with a third-party editor such as PlistEdit Pro.

http://www.fatcatsoftware.com/plisteditpro/

You can find complete specifications for creating codeless language modules in Appendix
D (see page 253), or in the Developer Information section of our web site.

http://www.barebones.com/support/develop/

Code-based Language Modules
TextWrangler also supports producing code-based language modules to handle more
complex languages or document formats. You can find complete specifications for creating
code-based language modules in the Developer Information section of our web site.

http://www.barebones.com/support/develop/

Language Module Compatibility
IMPORTANT You will not be able to use any third-party language modules which do not support

Unicode text, or which were built in CFM format. If TextWrangler encounters such a
module, it will not load that module, and will log a message to the system console.

Contact the developers of such a module, or visit the Bare Bones Software web site (see
above) for more information on the availability of updated modules.
234 Chapter 13: Language Modules

http://www.barebones.com/support/develop/index.shtml
http://www.fatcatsoftware.com/plisteditpro/
http://www.barebones.com/support/develop/index.shtml

Plug-In Obsolescence
IMPORTANT TextWrangler 4.0 no longer supports BBXT-based code plug-ins, and will not load any

such items present in the “Plug-Ins” application support folder.

If you used any third-party commercial plug-in, please contact its developer for
information on alternative solutions.
Plug-In Obsolescence 235

236 Chapter 13: Language Modules

A P P E N D I X

A
Command Reference
This appendix provides a quick reference for key assignments and a
comprehensive list of the commands that are available from TextWrangler’s user
interface.

In this appendix
Keyboard Shortcuts for Commands . 237
Assigning Keys to Menu Commands. 238

Available Key Combinations – 238
Listing by Menu and Command Name . 239
Listing by Default Key Equivalent . 244

Keyboard Shortcuts for
Commands
Many of TextWrangler’s commands have pre-defined keyboard shortcuts.
TextWrangler also lets you reassign the shortcuts for any menu command, script,
or text filter to suit your own way of working.

To change the keyboard shortcut for any menu command, you can use the Menus
& Shortcuts preference panel. (See “Assigning Keys to Menu Commands” on the
following page.)

Many other TextWrangler features can have keyboard shortcuts assigned as well.
Here’s how to set them:

To display any of TextWrangler’s floating palette windows, use the Palettes
submenu in the Window menu.

Feature Set Keys in…

Menu commands Menus & Shortcuts preference panel

Clippings Clippings palette

Text filters Menus & Shortcuts preference panel, or
the Text Filters palette

Scripts Menus & Shortcuts preference panel, or
the Scripts palette

Stationery Menus & Shortcuts preference panel, or
the Stationery palette
237

Assigning Keys to Menu Commands
You can assign your own keyboard shortcuts (key equivalents) to any of TextWrangler’s
menu commands, as well as items on the Text Options, Markers, and Line Breaks toolbar
popup menus, by choosing Preferences from the TextWrangler menu to bring up the
Preferences window, then selecting the Menus & Shortcuts preference panel.

To set the key equivalent for a menu command, locate and select the entry for the command
under the appropriate menu section, then double-click on the right-hand part of the line
containing that command, and type the desired keystroke.

To remove an existing key equivalent from a command, double-click on the existing key
combination and press the Delete key.

Click the Restore Defaults button to restore all key equivalents to their default values (as
listed in this Appendix).

Available Key Combinations
All menu key combinations must include either the Command key or the Control key (or
both), except function keys, which may be used unmodified. The Help, Home, End, Page
Up and Page Down keys can be used in menu key combinations as well. The Help key can
be assigned without modifiers; the others must be used in combination with at least either
the Command or Control key.
238 Appendix A: Command Reference

Listing by Menu and Command Name
TextWrangler Menu
About TextWrangler
Register...
Preferences Cmd-,
Setup
Check for Updates...
Install Command Line
Tools...

(not in Mac App
Store version)

Services (submenu)
Hide TextWrangler Cmd-H
Hide Others/Show All Cmd-Opt-H
Quit TextWrangler Cmd-Q

File
New (see next page)
New With Stationery (submenu)
Open… Cmd-O
Open from FTP/SFTP
Server...

Cmd-Ctl-O

Open Selection Cmd-D
Reveal Selection Cmd-Opt-D
Open Counterpart Cmd-Opt-uparrow
Open Recent (submenu)
Reopen Using Encoding (submenu)
Close Window Cmd-Shift-W
Close All Windows Cmd-Opt-W
Close Document Cmd-W
Close All Documents Cmd-Opt-Shift-W
Close & Delete
Save Cmd-S
Save All Cmd-Opt-S
Save As… Cmd-Shift-S
Save a Copy…
Save to FTP/SFTP
Server…

Cmd-Ctl-S

Save a Copy to FTP
Server…

Cmd-Opt-Shift-S

Revert
Reload from Disk
Export
Hex Dump File
Hex Dump Front
Document..
Page Setup…
Print… Cmd-P
Print All Cmd-Opt-P

Print One Copy Cmd-Shift-Opt-P
Print Selection

Edit
Undo Cmd-Z
Redo Cmd-Shift-Z
Clear Undo History Cmd-Ctl-Z
Cut Cmd-X
Cut & Append Cmd-Shift-X
Copy Cmd-C
Copy & Append Cmd-Shift-C
Paste Cmd-V
Paste Previous Clipboard Cmd-Shift-V
Paste Column Cmd-Ctl-V
Clear
Select All Cmd-A
Select None Cmd-Shift-A
Select Line Cmd-L
Select Paragraph Cmd-Opt-L
Complete F5
Insert (see next page)
Copy Path (submenu)
Show Clipboard
Previous Clipboard Ctl-[
Next Clipboard Ctl-]
Text Options… Cmd-Opt-,
Document Options… Cmd-Ctl-,
Printing Options… Cmd-Shift-,
Normalize Options…
Special Characters…
Listing by Menu and Command Name 239

File --> New
Text Document
 (with selection)
 (with Clipboard)
Text Window
Disk Browser
FTP/SFTP Browser

Edit --> Insert
File Contents...
File/Folder Paths...
Folder Listing...
Page Break
Short Time Stamp
Full Time Stamp
Emacs Variable Block...

Edit --> Copy Path
Copy Path
Copy Full Path
Copy URL
Copy Name

Text
Apply Text Filter (submenu)
Apply Text Filter [last
filter]
Exchange Characters
Exchange Words (Opt)
Change Case…
Change Case (submenu)
Shift Left Cmd-[
Shift Left One Space Cmd-Shift-[
Shift Right Cmd-]
Shift Right One Space Cmd-Shift-]
Un/Comment Selection Cmd-/
Hard Wrap… Cmd-\
Hard Wrap Cmd-Opt-\
Add Line Breaks
Remove Line Breaks
Convert to ASCII
Educate Quotes
Straighten Quotes
Add/Remove Line
Numbers...
Add/Remove Line
Numbers

(Opt)

Prefix/Suffix Lines…
Prefix/Suffix Lines (Opt)
Sort Lines…
Sort Lines (Opt)
Process Duplicate Lines…
Process Duplicate Lines (Opt)
Process Lines
Containing…
Process Lines Containing (Opt)
Rewrap Quoted Text… Cmd-’
Rewrap Quoted Text Cmd-Opt-’
Increase Quote Level
Decrease Quote Level
Strip Quotes
Zap Gremlins…
Zap Gremlins (Opt)
Entab…
Entab (Opt)
Detab…
Detab (Opt)
Normalize Line Endings
Find Next Misspelled WordCmd-;
Find All Misspelled Words Cmd-Opt-;
Clear Spelling Errors
240 Appendix A: Command Reference

Check Spelling as You
Type
Show/Hide Spelling Panel Cmd-Shift-;

View
Text Display (submenu)
Show/Hide Toolbar
Show/Hide Navigation Bar
Show/Hide Editor
Show/Hide Files Cmd-0
Show/Hide Open
Documents
Show/Hide Recent
Documents
Show/Hide Worksheet &
Scratchpad
Balance Cmd-B
Balance & Fold Cmd-Shift-B
Fold Selection
Unfold Selection
Collapse Enclosing Folds
Collapse All Folds
Expand All Folds
Previous Document Cmd-Opt-[
Next Document Cmd-Opt-]
Move to New Window Cmd-Opt-O
Open in Additional
Window
Reveal in Finder
Go Here in Terminal
Go Here in Disk Browser

View -> Text
Display
Show/Hide Fonts Cmd-T
Soft Wrap Text
Show/Hide Page Guide
Show/Hide Tab Stops
Show/Hide Line Numbers
Show/Hide Gutter
Show/Hide Invisibles
Show/Hide Spaces
Listing by Menu and Command Name 241

Search
Find… Cmd-F
Multi-File Search Cmd-Shift-F
Search in Disk Browser
Live Search Cmd-Opt-F
Find Next Cmd-G
Find Previous Cmd-Shift-G
Find All Cmd-Opt-G
Find Selected Text (Cmd-H or none)
Find Previous Selected
Text

Cmd-Shift-H

Use Selection for Find Cmd-E
Use Selection for Find
(grep)

Cmd-Shift-E

Use Selection for Replace Cmd-Opt-E
Use Selection for Replace
(grep)

Cmd-Opt-Shift-E

Replace Cmd-=
Replace All Cmd-Opt-=
Replace to End Cmd-Shift-=
Replace & Find Next
Go to Line… Cmd-J
Go to Line Cmd-Opt-J
Go to Center Line Cmd-Shift-J
Go to Function Start
Go to Function End
Go to Previous Function
Go to Next Function
Jump Back
Jump Forward
Set Jump Mark
Find Differences…
Compare Two Front
Documents
Compare Against Disk File
Apply to New Cmd–left arrow
Apply to Old Cmd–right arrow
Compare Again
Find in Reference Cmd-Shift-hyphen

Window
Minimize Window
Minimize All Windows (Opt)
Bring All to Front
Palettes (see below)
Workspace (see below)
Show Scratchpad
Show Unix Worksheet
Save Default [type of]
Window
Arrange
Tile Two Front Windows (Opt)
Get Info
Reveal in Finder
Cycle Through Windows Cmd-‘
Cycle Through Windows
Backwards

Cmd-Shift-‘

Exchange With Next
Synchro Scrolling
(Open windows)

Window -> Palettes
ASCII Table
Colors
Scripts
Stationery
Text Filters
Windows
242 Appendix A: Command Reference

Shebang (#!)
Check Syntax
Check Selection Syntax (Opt)
Run
Run…
Run in Terminal
Run in Debugger
Run File…
Show Module
Documentation

Scripts
Open Script Editor
Open Scripting Dictionary
Open Scripts Folder
Start/Stop Recording
(Installed scripts)

Help
Search (menu command

search field)
TextWrangler Help
User Manual
Tutorial
Service and Support

Toolbar (in-window)
Text Options (popup menu)
Soft Wrap Text
Show/Hide Page Guide
Show/Hide Tab Stops
Show/Hide Line Numbers
Show/Hide Gutter
Show/Hide Invisibles
Show/Hide Spaces
Smart Quotes
Auto-Expand Tabs

Navigation Bar (in-window)
Open Files Menu Ctl-Opt-F
Open Function Menu Ctl-Opt-N
Open Includes Menu Ctl-Opt-I
Open Marker Menu Ctl-Opt-M
Markers (popup menu)
Set Marker…
Set Marker (Opt)
Clear Markers…
Clear All Markers (Opt)
Find & Mark All…
Find & Mark All (Opt)

Status Bar (in-window)
Open Language Menu
Open Text Encodings
Menu
Open Breaks Menu Ctl-Opt-B
Line Breaks (popup menu)
Macintosh
Unix
DOS

Miscellaneous
Commands
Zoom Window Cmd-/
Zoom All Windows Cmd-Opt-/
Zoom Window Full ScreenCmd-Opt-Ctl-/
Zoom All Windows Full
Screen
Open URL (Cmd-click within

any URL)
Listing by Menu and Command Name 243

Listing by Default
Key Equivalent
Key Command

Cmd-0 View: Show/Hide Files

Cmd-A Edit: Select All

Cmd-B Text: Balance

Cmd-C Edit: Copy

Cmd-D File: Open Selection
or
File: Open File by Name

Cmd-E Search: Use Selection for Find

Cmd-F Search: Find…

Cmd-G Search: Find Again

Cmd-H Search: Find Selection
or

TextWrangler: Hide TextWrangler

Cmd-J Search: Go to Line…

Cmd-L Edit: Select Line

Cmd-N File: New: Text Document

Cmd-O File: Open…

Cmd-P File: Print…

Cmd-Q TextWrangler: Quit TextWrangler

Cmd-S File: Save

Cmd-T View: Text Display: Show/Hide
Fonts

Cmd-V Edit: Paste

Cmd-W File: Close Document/Close Window

Cmd-X Edit: Cut

Cmd-Z Edit: Undo

Cmd-, TextWrangler: Preferences

Cmd-` Window: Cycle Through Windows

Cmd-; Text: Find Next Misspelled Word

Cmd-‘ Text: Rewrap Quoted Text…

Cmd-[Text: Shift Left

Cmd-] Text: Shift Right
244 Appendix A: Command Reference

Cmd-/ Un/Comment Selection

Cmd-= Search: Replace

Cmd-\ Text: Hard Wrap…

Cmd–left arrow Search: Apply to New

Cmd–right arrow Search: Apply to Old

Cmd-Ctl-N File: New: HTML Document…

Cmd-Ctl-O File: Open from FTP/SFTP Server…

Cmd-Ctl-S File: Save to FTP/SFTP Server…

Cmd-Ctl-V Edit: Paste Column

Cmd-Ctl-Z Edit: Clear Undo History

Cmd-Ctl-, Edit: Document Options

Cmd-Ctl-/ Zoom Window Full Screen

Cmd-Ctl–down
arrow

Search: Go to Previous Error

Cmd-Ctl–up arrow Search: Go to Next Error

Cmd-Opt-D File: Reveal Selection

Cmd-Opt-E Search: Use Selection for Replace
(grep)

Cmd-Opt-F Search: Live Search

Cmd-Opt-G Search: Find All

Cmd-Opt-H TextWrangler: Hide Others

Cmd-Opt-J Search: Go to Line

Cmd-Opt-L Edit: Select Paragraph

Cmd-Opt-N File: New: Disk Browser

Cmd-Opt-O View: Move to New Window

Cmd-Opt-P File: Print All

Cmd-Opt-R Shebang: Run

Cmd-Opt-S File: Save All

Cmd-Opt-W File: Close All Windows

Cmd-Opt-, Edit: Text Options

Cmd-Opt-; Edit: Find All Misspelled Words

Key Command
Listing by Default Key Equivalent 245

Cmd-Opt-’ Text: Rewrap Quoted Text

Cmd-Opt-[View: Previous Document

Cmd-Opt-] View: Next Document

Cmd-Opt-= Search: Replace All

Cmd-Opt-/ Zoom All Windows

Cmd-Opt-\ Text: Hard Wrap

Cmd-Opt–up arrow File: Open Counterpart

Cmd-Opt-Shift-E Search: Enter Replace Pattern

Cmd-Opt-Shift-S File: Save a Copy to FTP Server…

Cmd-Opt-Shift-W File: Close All Documents

Cmd-Shift-A Edit: Select None

Cmd-Shift-B View: Balance & Fold

Cmd-Shift-C Edit: Copy & Append

Cmd-Shift-E Search: Use Selection for Find
(grep)

Cmd-Shift-F Search: Multi-File Search

Cmd-Shift-G Search: Find Previous

Cmd-Shift-J Search: Go to Center Line

Cmd-Shift-N File: New: Text Window

Cmd-Shift-P File: Page Setup

Cmd-Shift-S File: Save As…

Cmd-Shift-V Edit: Paste Previous Clipboard

Cmd-Shift-W File: Close Window {special}

Cmd-Shift-X Edit: Cut & Append

Cmd-Shift-Z Edit: Redo

Cmd-Shift-, Edit: Printing Options

Cmd-Shift-‘ Misc.: Cycle Through Windows
Backwards

Cmd-Shift-- Search: Find in Reference

Key Command
246 Appendix A: Command Reference

Cmd-Shift-; Text: Show Spelling Panel

Cmd-Shift-[Text: Shift Left One Space

Cmd-Shift-] Text: Shift Right One Space

Ctl-‘ Search: Go to Next Placeholder

Ctl-[Edit: Previous Clipboard

Ctl-] Edit: Next Clipboard

Ctl-Tab Switch to Header/Source File

Ctl-Opt-F Navigation Bar: Open Files Menu

Ctl-Opt-I Navigation Bar: Open Includes
Menu

Ctl-Opt-M Navigation Bar: Open Marker Menu

Ctl-Opt-N Navigation Bar: Open Function
Menu

Cmd-Shift-Opt-E Search: Use Selection for Replace
(grep)

Cmd-Shift-Opt-P File: Print One Copy

Key Command
Listing by Default Key Equivalent 247

248 Appendix A: Command Reference

A P P E N D I X

B
Editing Shortcuts
In TextWrangler you can perform many editing functions (including word
selection or deletion) directly from the keyboard. Chapter 4 contains complete
details on TextWrangler’s text editing features. This appendix provides a quick
reference to available keyboard and mouse shortcuts for word selection and
deletion.

In this appendix
Mouse Commands . 249
Arrow and Delete Keys . 250
Emacs Key Bindings . 251

Using universal-argument – 252

Mouse Commands

Triple-clicking is the same as clicking in a line and then choosing the Select Line
command from the Edit menu.

Holding down the Command or Option keys as you click or double-click triggers
special actions:

No Modifier Shift

Click move insertion
point

extend selection

Double-
click

select word extend selection to
word

Triple-click select line –none–

Option Command Command/
Option

Click –none– Open URL –none–

Double-
click

–none– –none– find next
instance of the
selected text
249

Arrow and Delete Keys
You can use the arrow keys to move the insertion point right, left, up, and down. You can
augment these with the Command and Option keys to move by word, line, or screens, or
with the Shift key to create or extend selections. For example, pressing Shift-Option-Right
Arrow selects the word to the right of the insertion point.

You can hold down the Control key while using the arrow keys to scroll through editing
windows without moving the position of the insertion point.

Note The meaning of the Command and Option modifiers listed above may be exchanged,
depending on which settings you have selected for Exchange Command and Option
Key Behavior in the Keyboard preference panel .

Key Modifier Action

(left/right) Arrow Move 1 character left/right

(left/right) Arrow Option Move 1 word left/right

(left/right) Arrow Command Move to beginning/end of line

(left/right) Arrow Control Jump to the previous/next character
transition from lower case to upper
case OR the next word boundary

(up/down) Arrow Move up/down 1 line in file

(up/down) Arrow Command Move to top/bottom of file

(up/down) Arrow Option Move to previous/next screen page

(up/down) Arrow Control Scroll view up/down

[any of the
above]

Shift Make or extend a selection range

Delete Deletes selection range, or
character preceding (to the left of)
the insertion point.

Delete Command Deletes all characters backwards to
beginning of line

Delete Option Deletes all characters back to
beginning of word

Delete Shift (same as Forward Delete)

Forward Delete Deletes selection range, or
character after (to the right of) the
insertion point

Forward Delete Command Deletes all characters forward to
end of the current line

Forward Delete Option Deletes all characters forward to
end of word

Forward Delete Shift (same as Forward Delete alone)
250 Appendix B: Editing Shortcuts

Emacs Key Bindings
The Keyboard preference panel contains an option labelled Use Emacs Key Bindings.
When this option is on, TextWrangler will accept the following Emacs-style keyboard
navigation commands. The Escape key is used in lieu of the Emacs “Meta” key; to type
these key equivalents, press and release the Escape key followed by the specified letter
key—for example, to type “Esc-V” press and release the Escape key and then type the
letter V.

Key
Sequence Action

Ctl-A beginning-of-line (Move insertion point to start of
current line)

Ctl-B backward-char (Move insertion point backward 1
place)

Ctl-D delete-char (Delete forward 1 character)

Ctl-E end-of-line (Move insertion point to end of current
line)

Ctl-F forward-char (Move insertion point forward 1 place)

Ctl-G keyboard-quit (cancel pending arguments)

Ctl-K kill-line (Delete to end of current line)

Ctl-L recenter (Scrolls the current view so the selection is
centered on screen)

Ctl-N next-line (Move insertion point down one line)

Ctl-O open-line (Inserts line break without moving
insertion point)

Ctl-P previous-line (Move insertion point up one line)

Ctl-R isearch-backward (Live Search backward)

Ctl-S isearch-forward (Live Search forward)

Ctl-T transpose-chars (Exchange Characters)

Ctl-U universal-argument (See note below)

Ctl-V scroll-up (Page down)

Ctl-W kill-region (Cut)

Ctl-Y yank (Paste)

Ctl-_ undo (Undo)
Emacs Key Bindings 251

Using universal-argument
The universal-argument command (Ctl-U) does not work quite the same way as it does in
Emacs. In TextWrangler, it is a simple repeat-count. For example, if you type Ctl-U, then a
3, and then Ctl-N, the insertion point will move down three lines. There is no visual
feedback as you type the number, and no way to backspace or otherwise edit the number. If
you make a mistake, the best you can do is type Ctl-G (keyboard-quit) and start over.

Ctl-X Ctl-C save-buffers-kill-emacs (Quit)

Ctl-X Ctl-F find-file (Open file)

Ctl-X Ctl-S save-buffer (Save current document)

Ctl-X Ctl-W write-file (Save As)

Esc-< beginning-of-buffer (Move insertion point to start of
document)

Esc-> end-of-buffer (Move insertion point to end of
document)

Esc-Q fill-paragraph (Hard Wrap with current settings)

Esc-T transpose-words (Exchange Words)

Esc-V scroll-down (Page up)

Esc-W copy-region-as-kill (Copy)

Esc-Y yank-pop (Paste Previous Clipboard)

Key
Sequence Action
252 Appendix B: Editing Shortcuts

A P P E N D I X

C
Codeless Language
Modules
This appendix lists the syntax elements available for use in codeless language
modules. For further details and example modules, visit the Developer and Plug-
In Library sections of our web site.
http://www.barebones.com/support/develop/

http://www.barebones.com/support/bbedit/plugin_library.html

In this appendix
Creating a Module . 253

Required Elements – 254
Installing Codeless Language Modules – 254
Function Scanning with Regular Expressions – 254
Spell Checking Code Runs – 255
Starting from a Template – 255

Language Keys and Properties. 257

Creating a Module
Codeless language modules are written as “property lists” (or “plists”), which is
an XML format that Mac OS X uses for many purposes.

http://developer.apple.com/documentation/Cocoa/
Conceptual/PropertyLists/Articles/XMLPListsConcept.html

You can create or edit codeless language module files with TextWrangler itself,
with the Mac OS X Property List Editor, or with a third-party editor such as
PlistEdit Pro.

http://www.fatcatsoftware.com/plisteditpro

Note The Property List Editor labels boolean properties as “yes” or “no”. However,
the actual plist text file must contain values of either “true” or “false”

(written as “<true/>” and “<false/>”).
253

http://www.barebones.com/support/bbedit/plugin_library.shtml
http://www.fatcatsoftware.com/plisteditpro
http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists/Articles/XMLPListsConcept.html
http://www.barebones.com/support/develop/index.html

Required Elements
At a minimum, your codeless language module file must include the appropriate XML
header declaration, as well as key/value specifications for each of
“BBEditDocumentType”, “BBLMLanguageCode”, and “BBLMLanguageSuffix” in order
for TextWrangler to load it. The module may then specify any other parameters you desire,
including whether to color syntax elements, color a set of keywords, honor case sensitivity,
and more. You should save the file with a “.plist” filename extension. If a module fails to
load, TextWrangler will write some diagnostic information to the system console.

Installing Codeless Language Modules
To install a language module, move or copy the module file into the Language Modules
folder of your TextWrangler application support folder (~/Library/Application Support/
TextWrangler/Language Modules/). If no such folder exists, you may create one.

After installing a new language module, you will need to quit and relaunch TextWrangler in
order to use it.

Function Scanning with Regular Expressions
Codeless language modules for use with BBEdit 8.5/TextWrangler 2.0 and later may
specify the “Function Pattern” key as a PCRE-compatible regular expression (i.e. a grep
pattern) instead of a string.

This expression should return the named subpatterns “function_name”, e.g.
(?P<function_name>...), and “function” to identify the function's name (which will be
displayed in the function popup menu) and the function as a whole. You can omit the
“function” subpattern in order to allow the entire pattern to match against functions, but
you should not omit the “function_name” subpattern as if this is not present, TextWrangler
will not display matches in the function popup.

Since the pattern TextWrangler uses internally when searching is a compound of your
string, comment, skip, and function patterns, you must use named backreferences rather
than positional backreferences in any of these patterns.

Escaping Patterns
Since your patterns are stored as content within the codeless language module’s XML plist
file, you must entity-encode any unsafe characters which your pattern contains, including
“<”, “>”, “&”, etc.

Nested Functions
A function pattern cannot be used to identify nested functions.
254 Appendix C: Codeless Language Modules

Performance Considerations for Function Scanning
Some expressions can take an extremely long time to locate particular strings. In order to
prevent this kind of behavior from locking TextWrangler up, any search that takes more
than 1.5 seconds will be aborted. This can lead to incomplete function lists and syntax
coloring. If you are developing a codeless language module, you can instruct TextWrangler
to report this condition and certain other grep-related errors in the console log by entering
the following Terminal command:

defaults write com.barebones.textwrangler debugCodelessGrepPats
-bool TRUE

TextWrangler will report some errors immediately upon loading your codeless language
module; other errors, such as the search time cap, may not be reported until the
corresponding pattern is used.

Spell Checking Code Runs
You can now specify whether “code” runs (i.e. any portions of a file which are not a
comment, string, or keyword) can be checked for spelling by adding the following key/
value pair to your codeless language module.

<key>BBLMCanSpellCheckCodeRuns</key> <true/>

Note You should probably enable spell checking if your module is for a “markup” language
as opposed to a "scripting" language (e.g. anything that's not explicitly in a comment
is probably text content, and not code).

Starting from a Template
The easiest way to begin creating a codeless language module is to start from a template, or
an existing module. The template provided on the following page contains all required key/
value pairs, plus a selection of additional parameters which you can fill out or remove as
desired.

Note All actions and behaviors described in the following “Language Keys and Properties”
table apply to both BBEdit and TextWrangler.
Creating a Module 255

CodelessLanguageModuleTemplate.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd"><plist
version="1.0">
<dict>

<key>BBEditDocumentType</key>
<string>CodelessLanguageModule</string>
<key>BBLMColorsSyntax</key> <true/>
<key>BBLMIsCaseSensitive</key> <true/>
<key>BBLMKeywordList</key>
<array>

<string></string>
</array>
<key>BBLMLanguageCode</key>
<string>????</string>
<key>BBLMLanguageDisplayName</key>
<string></string>
<key>BBLMScansFunctions</key> <true/>
<key>BBLMSupportsTextCompletion</key> <true/>
<key>BBLMSuffixMap</key>
<array>

<dict><key>BBLMLanguageSuffix</key>
 <string></string></dict>

</array>
<key>BBLMCanSpellCheckCodeRuns</key><true/>
<key>Language Features</key>
<dict>

<key>Close Block Comments</key>
<string></string>
<key>Close Parameter Lists</key>
<string></string>
<key>Close Statement Blocks</key>
<string></string>
<key>Close Strings 1</key>
<string></string>
<key>Close Strings 2</key>
<string></string>
<key>End-of-line Ends Strings 1</key> <true/>
<key>End-of-line Ends Strings 2</key> <true/>
<key>Escape Char in Strings 1</key>
<string></string>
<key>Escape Char in Strings 2</key>
<string></string>
<key>Identifier and Keyword Characters</key>
<string></string>
<key>Open Block Comments</key>
<string></string>
<key>Open Line Comments</key>
<string></string>
<key>Open Parameter Lists</key>
<string></string>
<key>Open Statement Blocks</key>
<string></string>
<key>Open Strings 1</key>
<string></string>
<key>Open Strings 2</key>
<string></string>
<key>Prefix for Functions</key>
<string></string>
<key>Prefix for Procedures</key>
<string></string>
<key>Terminator for Prototypes 1</key>
<string></string>
<key>Terminator for Prototypes 2</key>
<string></string>

</dict>
</dict>
</plist>
256 Appendix C: Codeless Language Modules

Language Keys and Properties
Key Value Type

BBEditDocumentType String
("CodelessLanguageModule")

This key/value pair must be present in the property list for the rest of
the plist to be examined and loaded, since the file containing the plist
need not have any specific file-type or filename-extension.

BBLMLanguageDisplayName String

This is the name displayed for the language module in popup menus
and preference panels. Be descriptive, but terse.

BBLMLanguageCode String

This string value should be a unique four-character code for the
language that the module supports. Note that the value must be
unique with respect to BBEdit’s built-in languages and with respect to
any installed language modules.

Unfortunately, there is no easy way to identify these potential
conflicts beforehand, but just keep this all in mind if the contents of a
file ends up looking as though it is being treated as some other
language than intended.

BBLMColorsSyntax Boolean

This must have the value 'true' for strings and comments to be
colored specially by the language module. Keywords will also be
colored if the value is 'true', but only if a list of keywords is also
supplied in a BBLMKeywordList array (see below).

BBLMScansFunctions Boolean

This must have the value 'true' for the text to be scanned to locate
“function definitions” and for a popup menu of function names to be
built that allows for quick navigation to those functions. This requires
the 'Identifier and Keyword Characters' string described below to be
properly specified.

BBLMSupportsTextCompletio
n

Boolean

If this has the value ‘true’, BBEdit will present completions taken from
the contents of any text runs (strings or comments) within the
current document.

BBLMFileNamesToMatch Array of Strings

BBEdit will use the specified strings to test filenames in an exact (but
case insensitive) manner to determine whether they should map to
the language module.
Language Keys and Properties 257

BBLMIsCaseSensitive Boolean

If this has the value 'false', letters in keywords and other strings are
matched against the text without regard to whether they are both
upper or lower case. The value 'true' means that an 'x', for example,
will only match another 'x' and not an 'X'.

BBLMKeywordList Array of String

Whenever a string is found to match one of the strings in this array, it
is specially colored. For this to happen, the 'Identifier and Keyword
Characters' string described below must be properly specified also.

BBLMPredefinedNameList Array of Dictionaries

Whenever a string is found to match one of the strings in this array, it
is colored as a “predefined name”. For this to happen, the 'Identifier
and Keyword Characters' string described below must also be
properly specified.

BBLMSuffixMap Array of Strings

Each dictionary entry in this array should contain some or all of the
following key/value pairs.

BBLMLanguageSuffix String

Files with names that end with this string value are considered to be
files of this module's language. The first character in the suffix string
is usually a '.' (dot, period, full stop, whatever). This string must be
present and non-empty or the entire dictionary entry will be ignored.

Bear in mind that if a suffix is given that overlaps with the suffix map
of another language module or BBEdit’s built-in languages, confusion
may result. Fortunately, all of the suffix mappings can be seen in
BBEdit's 'Languages' preference panel.

BBLMCanResolveIncludeFiles Boolean

If this key is present and its value is 'true', BBEdit will send
kBBLMResolveIncludeFileMessage for every include chosen off the
includes menu. The param block will include a CFStringRef with the
name, a CFURLRef to the document on disk (which may be NULL) and
a place for you to put a CFURLRef when returning.

If the module returns NULL and noErr, then BBEdit will assume that
the module declined to do anything with the string and will look for
the file as usual.

If the module returns a non-NULL URL, BBEdit will resolve it, so the
module can make a file://, http://, FTP or SFTP URL and the right
thing will happen. If the module returns something other than noErr,
BBEdit will not attempt anything else with the include and will report
the error.

Key Value Type
258 Appendix C: Codeless Language Modules

BBLMReferenceSearchURLTe
mplate

String

Language modules can now specify a default value for the “Reference
URL Template” language-specific preference by including a suitable
URL string with this key:

http://www.example.com/foobar.cgi?__SYMBOLNAME__

BBLMIsSourceKind Boolean

If this key is present and its value is 'true', files with this suffix are
considered 'source' files.

BBLMIsHeaderKind Boolean

If this key is present and its value is 'true', files with this suffix are
considered 'header' files.

If both the BBLMIsSourceKind and BBLMIsHeaderKind keys are
present and have the value 'true', BBLMIsSourceKind takes
precedence, but there should really be only one or the other or
neither.

If the module's language has a concept of source versus header files
and the appropriate values are specified (for example, files with
names ending with “.h” are considered header files for C++, whereas
files with names ending with “.cp” are considered source files), users
will be able to jump between source and header files that share a
common prefix (e.g. “foobar.h” and “foobar.cp”) using command-tab.

BBLMCanSpellCheckCodeRuns Boolean

If this key is present and its value is 'true', BBEdit will check spelling
within “code” runs.

Language Features Dictionary

This dictionary is a container for the following collection of key/value
pairs that define the language elements that the module supports.

Key Value Type
Language Keys and Properties 259

Identifier and Keyword
Characters

String

Most languages have keywords and identify other language elements
with names that are words made up of letters, digits, and possibly
other special characters. The function scanner looks for complete and
unbroken sequences of such characters and then tries to decide
whether the 'word' is a keyword or some other identifier. This string
should contain all of the characters that can be in such a word.

Thus, a typical value for this string might be:
“0123456789ABCDEFGH
IJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz”

which is the set of characters used in many languages for keywords
and other identifiers. Note that the character need not be in any
particular order.

Identifier and Keyword
Character Class

String

If this string is present, it will be used instead of the “Identifier and
Keyword Characters” string.

This string should be in the form of a grep character class. Any
character that is permissible between square brackets (“[“ and “]”) in
a grep character class is permissible here (but do not include the
square brackets themselves).

Also, this string is not restricted to ASCII characters; it may include
any valid UTF-16 characters. You may use grep’s \x{...} notation for
hexadecimal character codes or other standard character escapes,
such as \r, \t, etc., to include characters which are difficult to enter or
don't display well (or at all).

Key Value Type
260 Appendix C: Codeless Language Modules

Function Pattern String

This key allows you to specify a PCRE-compatible regular expression
to identify functions and function names.

Your pattern should return the named subpatterns “function_name”,
e.g. (?P<function_name>...), and “function” to identify the function’s
name (which will be displayed in the function popup menu) and the
function as a whole.
You can omit the “function” subpattern in order to allow the entire
pattern to match against functions, but you should not omit the
<function_name> subpattern as if this is not present, BBEdit will not
display matches in the function popup.

Since the pattern BBEdit uses internally when searching is a
compound of your string, comment, skip, and function patterns, you
must use named backreferences rather than positional
backreferences within this pattern.

If this string is present, the following Language Features will be
ignored:

 Prefix for Functions
 Prefix for Procedures
 Open Parameter Lists
 Close Parameter Lists
 Terminator for Prototypes 1
 Terminator for Prototypes 2
 Open Statement Blocks
 Close Statement Blocks
 Open Block Comments
 Close Block Comments
 Open Line Comments
 Open Strings 1
 Close Strings 1
 Escape Char in Strings 1
 End-of-line Ends Strings 1
 Open Strings 2
 Close Strings 2
 Escape Char in Strings 2
 End-of-line Ends Strings 2

Key Value Type
Language Keys and Properties 261

Skip Pattern String

If the Function Pattern string is present in the Language Features
dictionary, the presence of this string affects the way BBEdit uses the
Function Pattern to scan for function definitions. (Note that you must
use named backreferences rather than positional backreferences
within this pattern.)

When this string is not present, BBEdit uses the Function Pattern in
the same way it would as the Search pattern in a Find command.
BBEdit will attempt to match the pattern and, if that fails to match,
will advance the starting point of the search by one character and try
again.

When this string is present, after a failed match against the Function
Pattern, BBEdit attempts to match the Skip Pattern. If that succeeds,
BBEdit will advance the starting point for the next attempt to match
the Function Pattern past the text matched by the Skip Pattern. If no
match for the Skip Pattern is found, then BBEdit will advance the
starting point of the search by one character and apply the Function
Pattern again.

This can be useful in cases where, for example, strings and
comments can contain text that appears to be a function definition
but you do not wish them to be placed in the function popup menu.
You can define a Skip Pattern to ensure that strings and comments
are not included in the search for function definitions.

In fact, if you supply a Comment Pattern and/or a String Pattern, you
can “call” those patterns as named subpatterns within your Skip
Pattern (and even your Function Pattern). The syntax for calling
these subpatterns is (?P>comment) and (?P>string) respectively.

Prefix for Functions String

Prefix for Procedures String

In some languages, function definitions begin with a specific
keyword. For example, Pascal has functions that return values begin
with the keyword 'function' and functions that return no values begin
with the keyword 'procedure'. Other languages, such as C and C++,
have functions begin simply with their names and other attributes,
followed by a list of parameters, followed by the statement block that
comprises the function body.

If one or both of these prefix strings is present in the plist and non-
empty, the function scanner will look for Pascal-style function
definitions, otherwise it will look for C-style function definitions.

Key Value Type
262 Appendix C: Codeless Language Modules

Open Parameter Lists String

Close Parameter Lists String

A function's list of parameters is almost always enclosed by matching
left and right parentheses (probably due to the tradition in
mathematics), though there are exceptions. Note that in C-style
function definitions empty parameter lists must be designated at a
minimum by “()” (or whatever pair of delimiters applies), whereas in
Pascal-style function definitions even the delimiters may be omitted.

Terminator for Prototypes 1 String

Terminator for Prototypes 2 String

Some languages allow for a function definition to appear without a
body so that other functions that reference it know its “interface”
without needing to know its “implementation”. Sometimes a keyword
is used as a substitute for the body -- in Pascal the keywords
'forward' or 'external' are used. In C-style languages, the function
definition is usually just closed off with a semicolon after the
parameter list. In either case, if one of the specified strings is
encountered before the string value of 'Open Statement Blocks'
described below, the function definition is considered to be a bodiless
prototype and doesn't appear in the function popup menu.

Open Statement Blocks String

Close Statement Blocks String

Function bodies are usually “statement blocks” that begin and end
with *something*. In Pascal, it is literally the keywords 'begin' and
'end'. In C and C-style languages it is usually the characters '{' and
'}'. In both cases, such statement block can usually be nested inside
one another and the function scanner takes this into account.

Note that some languages, such as VBScript, overload the keyword
'END' with another keyword, such as 'SUB', separating the two with
one or more spaces. Visually, this is nice because it lets a human
reader know what the 'END' ends, but it presents a problem for the
function scanner, which is not prepared at this time to treat
sequences of keywords as having special meaning. In theory, it would
be possible to get by with specifying just 'END' or, more likely, just
'SUB' for the value of 'Close Statement Blocks', but in practice it's
hard to say.

Key Value Type
Language Keys and Properties 263

Comment Pattern String

String Pattern String

Either pattern may be in the form of any PCRE-compatible regular
expression (grep pattern). You must use named backreferences
rather than positional backreferences within these patterns.

BBEdit will color text that matches the Comment Pattern as
comments, and text that matches the String Pattern as strings. All
other text will be colored with the default text color except for
recognizable keywords.

If either (or both) of these strings are present, the following
Language Features will be ignored:

 Open Block Comments / Close Block Comments
 Open Line Comments
 Open Strings 1 / Close Strings 1
 Escape Char in Strings 1
 End-of-line Ends Strings 1
 Open Strings 2 / Close Strings 2
 Escape Char in Strings 2
 End-of-line Ends Strings 2

Open Block Comments String

Close Block Comments String

Block comments are multi-line comments that begin and end with
special delimiters, such as '/*' and '*/' in C, and '{' and '}' in Pascal,
where everything in between is ignored entirely.

Open Line Comments String

Line comments begin with a special delimiters, such as '//' in C, and
continue until the end of the line they begin on.

Key Value Type
264 Appendix C: Codeless Language Modules

Open Strings 1 String

Close Strings 1 String

Escape Char in Strings 1 String

End-of-line Ends Strings 1 Boolean

Open Strings 2 String

Close Strings 2 String

Escape Char in Strings 2 String

End-of-line Ends Strings 2 Boolean

Most languages allow for strings to be enclosed by either matching
single-quote characters or matching double-quote characters. Thus,
two different sets of key/value pairs can be used for this or for any
other kinds of strings that may be needed.

The “escape” values, if matched within a string, cause the character
following not to be taken to have any special meaning and passed
over. If the 'End-of-line Ends Strings' value is true, the “escape” can
be used to pass over the end of the line and allow the string to
continue on the following line. In any case, the “escape” may also be
used to skip over the leading (or only) character in the 'Close Strings'
value and allow that value to be included in the string.

Key Value Type
Language Keys and Properties 265

266 Appendix C: Codeless Language Modules

Index

Symbols
“Home” and “End” Keys 182

A
active windows 60
alternation 146
AppleScript 29, 34

attaching scripts to menu items 206
pitfalls 220
reading dictionary 214
recording 206

application launch
overriding default action 179

application launch behavior 179
Application Preferences 178
Apply to New command 132
Apply to Old command 132
Arrange command 112
arranging windows 112
arrow keys 250
ASCII table 110
attaching scripts to menu items 206
automatic spell checking 181

B
backups 55
binary plist files 43
BOM. see byte-order mark 40, 48
Bonjour 50
bookmarks 50
browsers 167

differences 93
disk browser 169
file list panel 170
search results 121, 171
setting the list display font 178
splitter 168
status bar 168, 169
text panel 168

byte-order mark 40, 48
byte-swapped. see Little-Endian 48
bz2-compressed files 43

C
C programming language 107
camel case. see CamelCase 77
CamelCase 77

keyboard navigation of 77
Cancel button 20
capitalize

lines 101
sentences 101
words 101

case sensitivity 118
case transformations 150
changing case 100
character classes 140
character offset specification 44
character set encoding 37, 40, 48
check spelling as you type 181
Check Spelling command 96
checking spelling

user dictionary 98
Classic Mac line breaks 37
Clear command 20, 60
Clear key 60
clearing a marker 95
Clipboard 61
clipboard 61
clipboards, multiple 61
colored text 85
columns

see rectangular selection 77
Command key 21
command keys

assigning to menu items 237
in dialogs 20
in menus 20
listing by default key 244
listing by menu 239
shortcuts 249

command line
configuring TextWrangler for use with 221

Command-Period 20
Compare Again command 132
Compare Against Disk File 93
Compare Two Front Documents 91
comparing files 91

multiple files 94
complex patterns 144
concatenate 90
contextual menu, in disk browsers 170
control characters 107
Convert to ASCII 102
Copy & Append command 61
Copy command 20, 61
267

Counterpart button 67
counterparts

overriding defaults 46
creating documents 35

with clipboard 35
with selection 35

cursor movement 76
using arrow keys 77

Cut & Append command 61
cut and paste 60
Cut command 20, 60

D
default window position

setting 111
Delete key 60, 81, 250
deleting text 60
Detab command 108
dialog keyboard shortcuts 20
dictionary, AppleScript 214
Differences command 93
disclosure triangles 71
Disk Browser 35
disk browsers 29, 34, 35, 39, 169

file list panel 170
status bar 169

document proxy icon 64, 75
documents

comparing 91
creating 35
editing text 60
inserting text 90
modification indicator 64
opening 267
saving 35, 36
window anatomy 63
window handling 267

documents drawer. see file list 68
DOS line breaks

see Windows line breaks 37
double-clicking 39
drag-and-drop

in document windows 62
to TextWrangler application icon 39
to Windows floating window 39

drawer. see file list 68
dynamic menus 19

E
edit tool 222
editing text 60

shortcuts 249
Editor Defaults 177
Emacs Key Bindings 183, 251

Emacs variables 38
x-counterpart 46

encoding 37, 40, 48
End key 82
Entab command 108
Enter key 20
escape codes 137
Escape key 20
Exchange with Next command 112
expanding tabs 83
extending the selection 77, 81

F
F keys 82
Favorites 31
file filters 124
file groups 35
file list 68
file list panel 170
file transfer format, FTP/SFTP 52
Filters 229
filters, file 124
Find & Mark All command 96
Find & Replace All Matches 127
Find Again command 117, 130
Find All 117, 121
Find command 115, 118, 129
Find dialog

see Find window 116
Find Differences command 132
Find in Next File command 131
Find Selection command 130
Find window 116
finding text

see searching
floating windows

ASCII table 110
window list 111

fold indicator 72, 74
folder, listing contents of 90
foreign text 99
Forward Delete key 81, 82
Frame Printing Area 56
freezing line endings 87
FTP

alternate ports 52
FTP Browsers 54
function keys 82
function navigation. see function popup 66
function popup 66

G
Go To Center Line command 131
Go To Line command 82, 131
268 Index

Go To Previous Error command 131
gremlins 107
grep 118

alternation 146
backreferences 154
character classes 140
comments 157
complex patterns 144
conditional subpatterns 161
entire matched pattern 148
escape codes 137, 141
examples 151
excluding characters 140
longest match issue 146
lookahead assertions 160
lookbehind assertions 160
marking a mail digest 153
marking structured text 152
matching delimited strings 152
matching nulls 154
matching white space 151
matching words and identifiers 151
named backreferences 145
named subpattern 144
non-capturing parentheses 156
non-printing characters 141
non-repeating subpatterns 162
numbered backreferences 145
once-only subpatterns 162
pattern modifiers 158
positional assertions 159
POSIX character classes 155
quantifiers 143
ranges 140
rearranging name lists 153
recursive patterns 164
repetition 143
replacement patterns 148
replacing with subpatterns 149
setting markers with 96
subpatterns 144, 148
wildcards 138

Grep Patterns.xml 28
gutter 71
gzip-compressed files 43

H
Hard Wrap command 86, 88
hard wrapping 86, 87, 101
headers 57
hex escapes 119, 141
hexadecimal 107
hidden files

on FTP servers 51
Highlight Insertion Point 187

highlighting of text 60
hollow diamond 64
Home key 82
human interface 19

I
incremental search

see Live Search 128
indenting 101
input, Unix filter 229
inserting files 90
inserting folder listings 90
inserting page breaks 90
inserting text 90
insertion point 60
Install Command Line Tools 54, 222
installing TextWrangler 23
international text 37, 40, 48, 99
invisible characters 84
invisible files 43

on FTP servers 51

J
Jump Back 132
Jump Forward 132

K
Key Equivalent 244
keyboard shortcuts 238, 249

in dialogs 20

L
language, source code 84
launching TextWrangler 34
line breaks 37, 101
line breaks, default 37
line ending format 37
line endings 37
line number specification 44
line numbers

show on printout 56
list display font 178
Little-Endian 48
Live Search 128
longest match issue 146
lower case 101

M
Mac line breaks

see Classic Mac 37
Macintosh Drag and Drop 62

see also drag-and-drop
Index 269

Mark pop-up menu 95
Marker popup menu 67
markers

clearing 95
setting 95

menus 19, 20
Menus & Shortcuts preference panel 20
Menus preference panel 237
mouse shortcuts 249
moving text 60
moving the cursor 76

using the arrow keys 77
multi-byte text 37, 40, 48, 99
multi-file comparisons 94
multi-file search 119
Multi-File Search command 115
multiple clipboards 61
multiple Undo 62

N
named subpattern 144
navigation

functions 66
with jump marks 132

navigation bar 65
nested folds 71
New Window with Selection 35
Non-Greedy Quantifiers 147
non-printing characters 84, 118
numeric keypad 81

O
Open command 39

options 41
Open dialog 43
Open File by Name command 47
Open from FTP/SFTP Server 43

Show Files Starting with "." 51
Open Hidden

see Show Hidden Items 43
Open Recent command 39, 46
Open Recent menu 178
Open Selection 44
Open Selection command 39, 43
Opening 39

binary plists 43
bz2-compressed files 43
gzip-compressed files 43

Opening Existing Documents 39
Option-¥ on Japanese Keyboards 183
outdenting 101

P
page breaks 90

Page Down key 82
Page Guide 182
page guide 84
Page Up key 82
paragraph (definition) 60
Paragraph Fill option 89
Paste command 20, 61
Paste Previous Clipboard 252
Paste Previous Clipboard command 61
pattern matching

see grep
pencil icon 64
Perl 225
Perl scripts 225
Perl/Unix Filters palette 237
POSIX-Style Character Classes 155
Preferences 173

Application 178
Function Popup 222
Printing 56

Prefix/Suffix Lines plug-in 103
Print Color Syntax 57
Print Line Numbers 56
Print One Copy command 56
Print Selection 56
printing 56
Process Lines Containing plug-in 105
pull-down menus 19
Python 225

configuration 227
Python scripts 225

Q
Quick Search

see Live Search 128

R
range end indicators 72
recording scripts 206
rectangular selection 77
Redo command 62
reflowing paragraphs 88
refresh open files 178
regular expressions

see grep
remember recently used items 178
Remove Line Breaks command 86
Rendezvous. see Bonjour 50
Reopen Documents 179
Reopen documents, preventing 179
repetition metacharacters 143
Replace 117
Replace & Find Again command 118, 131
Replace All 117, 121, 127, 131
270 Index

Replace to End 118
replacing text 60

see also searching
Return key 20
Ruby 225

S
Save a Copy command 36
Save a Copy to FTP Server command 53
Save As command 36
Save As options

line breaks 37
Save As Stationery 37

Save command 36
Save Selection command 36
Save to FTP Server command 52
Saved Sources.xml 31
script systems 99
Scripts 230
Scripts folder 28
Scripts palette 28, 237
scrolling, synchronized 112
search results window 121, 171
search sources 31
searching 116

all open documents 123
case sensitive 118
for non-printing characters 118
for whole words 118
grep 118

see also grep
in a folder 123
in multiple files 119
in results of a previous search 124
in selection only 118
menu reference 129
non-printing characters 141
replacing in multiple files 127
results window 121, 171
search set 122
wrap around 118

Select All command 20, 60
Select Line command 60
Select Paragraph command 60
selected text 60
selecting text 60, 76

by clicking 76
extending the selection 77
rectangular selection 77

Services menu 35
Set Jump Mark 132
Set Marker command 95
Set Menu Keys. see Menus & Shortcuts preference panel
20
setting markers 95

using grep 96
Shell scripts 225
shell scripts 225
shell worksheets 222
shifting text 101
Show Files Starting with "." 51
Show Hidden Items 43
Show Invisibles command 64
Show Page Guide 64, 177
Soft Wrap Text command 64
soft wrapping 84, 86

as default 87
Software Update 178
solid diamond 64
Sort Lines plug-in 103
spell checking 96

user dictionary 98
split bar 64

in browsers 168
splitting a window. see split bar 64
startup

window handling 179
startup items 34
stationery 54

creating 37, 54
Stationery folder 29
using 54

status bar
hiding 84
in browsers 168
in disk browsers 169

status bar. see tool bar 63
subpatterns 144
Synchro Scrolling command 112
syntax coloring 85

on printout 57

T
tab width 177
tabs

converting to and from spaces 108
tarballs 43
Text Display menu 73
Text Document, creating 35
text encoding

choosing 40
Text Encodings preference panel 40
text folding

disclosure triangles 71
fold indicator 72
gutter 71
nested folds 71
range end indicators 72

text highlighting 60
Text Options popup 64
Index 271

text transformation 86
text wrapping 86
TextWrangler Talk discussion group 165
time stamps 57
tool bar 63
transformations, case 150
twdiff 92
twdiff tool 223
twfind tool 223
typing text 60
typographer’s quotes 83

U
Un/Comment command 101
Undo command 62
Unicode 37, 40, 48, 99
universal-argument 252
Unix line breaks 37
Unix shell scripts 225
user interface 19
Using Language Modules 234
UTF-16 40, 48
UTF-8 40, 48

V
verify open files 178

W
wildcards 138
window list 111
windows

arranging 112
exchanging with next 112
split bar 64

Windows floating window 39
Windows line breaks 37
Windows menu 109
worksheets, shell 222
wrap around 118
wrapping text 84, 86

Y
yank-pop 252

Z
Zap Gremlins command 107
272 Index

	Title Page
	Credits
	Copyrights & Trademarks
	TextWrangler License Agreement
	Info-ZIP License
	Table of Contents
	Chapter 1 - Welcome to TextWrangler
	Getting Started
	What Is TextWrangler?
	How Can I Use TextWrangler?
	Editing Source Code
	Editing Text Files

	Human Interface Notes
	Dynamic Menus
	Bypassing Options Dialogs
	Keyboard Shortcuts for Commands
	Contextual Menus
	Snappy Palettes
	Dialog Box and Sheet Key Equivalents

	Feature Highlights
	Info on New Features

	Discussion Group
	Support Services
	How to contact us

	Chapter 2 - Installing TextWrangler
	Basic Installation
	System Requirements
	Installing TextWrangler
	Checking for Updates
	Upgrading from a Previous Version
	First Run Configuration

	TextWrangler’s Application Support Folders
	Using a Global Application Support Folder
	Using a Local Application Support Folder
	Application Support Folder Contents
	Attachment Scripts
	Auto-Save Recovery
	Color Schemes
	Language Modules
	Menu Scripts
	Plug-Ins
	Readme.txt [file]
	Scripts
	Setup
	File Filters.filefilters
	FTP Bookmarks.xml
	Grep Patterns.xml
	Menu Shortcuts.xml
	Not Menu Shortcuts.xml

	Shutdown Items
	Startup Items
	Stationery
	Text Filters
	Superseded App Support Folders

	Preference Files and Folders
	TextWrangler Preferences File
	TextWrangler Preferences Folder
	Document State.plist
	Recent Files & Favorites
	Recent Folders & Favorites
	Save Application State.appstate
	Saved Sources.xml

	Chapter 3 - Working with Files
	Launching TextWrangler
	Startup Items

	Creating and Saving Documents
	Saving a Copy of a File
	File Saving Options
	Save As Stationery
	Line Breaks
	Encoding

	File State
	Emacs Local Variables
	Saving with Authentication
	Saving Compressed Files as bz2 or gzip

	Crash Auto-Recovery
	Opening Existing Documents
	Choosing the Encoding for a Document
	Using the Open Command
	Enable Menu
	Show Hidden Items
	Translate Line Breaks
	Read As
	Open In

	Reload from Disk
	Opening and Viewing Files within Zip Archives
	Opening bz2, gzip, and tar Files and Binary plists
	Opening Hidden Files
	Using the Open from FTP/SFTP Server Command
	Using the Open Selection Command
	Using the Open File by Name Commands
	Using the Open Counterpart Command
	Using the Open Recent Command
	Using the Reopen using Encoding Command

	Quitting TextWrangler
	An International Text Primer
	International Text in TextWrangler
	Unicode
	Saving Unicode Files
	Opening Unicode Files

	Accessing FTP/SFTP Servers
	Opening Files from FTP/SFTP Servers
	Specifying Alternate Ports
	Storing Passwords
	Using SSH Key Files
	Transfer Formats

	Saving Files to FTP/SFTP Servers

	Using TextWrangler from the Command Line
	Using Stationery
	Manually Sorting the Stationery

	Hex Dump for Files and Documents
	Making Backups
	Printing
	Text Printing Options
	Page Options:
	Page Headers:
	Print page headers
	Print full pathname
	Time Stamp

	Chapter 4 - Editing Text with TextWrangler
	Basic Editing
	Moving Text
	Multiple Clipboards
	Drag and Drop

	Multiple Undo
	Window Anatomy
	The Toolbar
	Key Equivalents for Toolbar Menu Items

	The Split Bar
	The Navigation Bar
	Choosing the Active Document
	Function Navigation
	Manually Defined Functions
	Navigation with Markers
	Opening Counterparts
	Opening Included Files
	Key Equivalents for Navigation Bar Menu Items

	The File List
	The Status Bar
	Cursor Position
	Language
	Text Encoding
	Line Break Type
	Document Statistics
	Key Equivalents for Status Bar Items

	The Gutter and Folded Text Regions
	Folding Controls

	The View Menu
	Text Display
	Show/Hide Fonts
	Soft Wrap Text
	Show/Hide Page Guide
	Show/Hide Tab Stops
	Show/Hide Line Numbers
	Show/Hide Gutter
	Show/Hide Invisibles
	Show/Hide Spaces

	Show/Hide Toolbar
	Show/Hide Navigation Bar
	Show/Hide Editor
	Show/Hide Files
	Hide Currently Open Documents
	Show/Hide Recent Documents
	Balance
	Balance & Fold
	Fold Selection
	Unfold Selection
	Collapse Enclosing Fold
	Collapse All Folds
	Expand All Folds
	Previous Document/Next Document
	Move to New Window
	Open in Additional Window
	Reveal in Finder
	Go Here in Terminal
	Go Here in Disk Browser

	Cursor Movement and Text Selection
	Clicking and Dragging
	Arrow Keys
	CamelCase Navigation
	Rectangular Selections
	Working with Rectangular Selections
	Example: Moving a Column
	Filling Down
	Further Details

	Scrolling the View
	Accelerated Scrolling

	The Delete Key
	The Numeric Keypad
	Go To Line Command
	Function Keys
	Resolving URLs

	Text Options
	Editing Options
	Use typographer’s quotes
	Auto-expand tabs
	Soft wrap text
	Language

	Display Options
	Line numbers
	Gutter
	Toolbar
	Navigation bar
	Page guide
	Tab stops
	Show invisibles
	Syntax Coloring

	How TextWrangler Wraps Text
	Soft Wrapping
	Soft Wrapping with Indentation
	Exporting Soft-Wrapped Text
	Soft Wrapping in Browsers
	Soft Wrapping and Line Numbers

	Hard Wrapping
	Hard-Wrapping Soft-Wrapped Text
	Hard Wrapping and Filling Text

	The Insert Submenu
	Inserting File Contents
	Inserting File & Folder Paths
	Inserting a Folder Listing
	Inserting a Page Break
	Inserting Time Stamps
	Inserting an Emacs Variable Block

	Comparing Text Files
	Compare Against Disk File
	Multi-File Compare Options
	List identical files
	Flatten hierarchies
	Skip (…) folders
	Only compare text files
	Use file filter

	Using Markers
	Setting Markers
	Clearing Markers
	Using Grep to Set Markers

	Spell Checking Documents
	Check Spelling As You Type
	Manual Spell Checking
	The Spelling Panel

	Chapter 5 - Text Transformations
	Text Menu Commands
	Apply Text Filter
	Apply Text Filter <last filter>
	Exchange Characters
	Change Case
	Shift Left / Shift Right
	Un/Comment Selection
	Hard Wrap
	Add Line Breaks
	Remove Line Breaks
	Convert to ASCII
	Educate Quotes
	Straighten Quotes
	Add/Remove Line Numbers
	Prefix/Suffix Lines
	Sort Lines
	Process Duplicate Lines
	Process Lines Containing
	Rewrap Quoted Text
	Increase and Decrease Quote Level
	Strip Quotes
	Zap Gremlins
	Zap Non-ASCII characters
	Zap Control characters
	Zap Null (ASCII 0) characters
	Delete
	Replace with code
	Replace with <character>

	Entab
	Detab
	Normalize Line Endings

	Chapter 6 - Windows & Palettes
	Window Menu
	Minimize Window
	Bring All to Front
	Palettes
	ASCII Table
	Colors
	Scripts
	Stationery
	Text Filters
	Windows

	Save Default <type of >Window
	Arrange
	Cycle Through Windows
	Exchange with Next
	Synchro Scrolling
	Window Names
	Zoom (key equivalent only)

	Chapter 7 - Searching
	Search Windows
	Basic Searching and Replacing
	Search Settings
	Case Sensitive
	Entire Word
	Grep
	Selected Text Only
	Wrap Around

	Special Characters

	Multi-File Searching
	Starting a Search
	Find All and Multi-File Search Results
	Specifying the Search Set
	Searching the files in a folder
	Searching all open documents
	Searching the contents of compressed archives
	Searching the files contained in a results browser

	Saved Search Sources
	Multi-File Search Options
	File Filters
	New Filter
	Specifying Time and Date Criteria
	Filtering by Name
	Temporary Filters
	Editing and Deleting Filters

	Searching SCM Directories

	Multi-File Replacing
	Live Search
	Search Menu Reference
	Find
	Multi-File Search
	Search in … (Disk or Results Browser)
	Live Search
	Find Next/Previous
	Find All
	Find Selected Text/Previous Selected Text
	Use Selection for Find
	Use Selection for Find (grep)
	Use Selection for Replace
	Use Selection for Replace (grep)
	Replace
	Replace All
	Replace to End
	Replace & Find Again
	Go to Line
	Go to Center Line
	Go to Previous/Next Error
	Go to Function Start/End
	Go to Previous/Next Function
	Jump Back
	Jump Forward
	Set Jump Mark
	Find Differences
	Compare Two Front Documents
	Compare Against Disk File
	Apply to New
	Apply to Old
	Compare Again
	Find in Reference

	Chapter 8 - Searching with Grep
	What Is Grep or Pattern Searching?
	Writing Search Patterns
	Most Characters Match Themselves
	Escaping Special Characters
	Wildcards Match Types of Characters
	Other Positional Assertions

	Character Classes Match Sets or Ranges of Characters
	Matching Non-Printing Characters
	Other Special Character Classes
	Quantifiers Repeat Subpatterns
	Combining Patterns to Make Complex Patterns
	Creating Subpatterns
	Using Backreferences in Subpatterns
	Using Alternation
	The “Longest Match” Issue
	Non-Greedy Quantifiers

	Writing Replacement Patterns
	Subpatterns Make Replacement Powerful
	Using the Entire Matched Pattern
	Using Parts of the Matched Pattern
	Case Transformations

	Examples
	Matching Identifiers
	Matching White Space
	Matching Delimited Strings
	Marking Structured Text
	Marking a Mail Digest
	Rearranging Name Lists

	Advanced Grep Topics
	Matching Nulls
	Backreferences
	In Search Patterns
	In Character Classes
	In Replacement Patterns

	POSIX-Style Character Classes
	Non-Capturing Parentheses
	Perl-Style Pattern Extensions
	Comments
	Pattern Modifiers
	Positional Assertions
	Conditional Subpatterns
	Once-Only Subpatterns
	Recursive Patterns

	Recommended Books and Resources
	Mastering Regular Expressions, 3rd Edition
	TextWrangler Talk

	Chapter 9 - Browsers
	Browser Overview
	List Pane
	Toolbar
	Text View Pane
	Splitter

	Disk Browsers
	Disk Browser Controls
	Directory Menu
	Action Menu
	Filter Menu
	Toggle Editor Button

	Contextual Menu Commands
	Dragging Items
	Using the List Pane in Disk Browsers

	Search Results Browsers
	Error Results Browsers

	Chapter 10 - Preferences
	The Preferences Window
	Searching the Preferences
	Restore Defaults

	Appearance Preferences
	Toolbar
	Text options
	Document proxy icon

	Navigation Bar
	Document Navigation
	Marker menu
	Counterpart button
	Included files menu
	Function menu
	Sort items by name
	Show comment callouts
	Show function prototypes

	Editing Window
	Tab stops
	Line numbers
	Gutter
	Page Guide at N characters
	Guide Contrast

	Text Status Bar
	Cursor position
	Language
	Text encoding
	Line break type
	Document statistics

	List Display Font

	Application Preferences
	Open documents into the front window...
	Automatically refresh documents as they change on disk
	Remember the N most recently used items
	Always Show Full Paths in “Open Recent” Menu

	When TextWrangler becomes active
	Do Nothing
	New text document

	Reopen documents that were open at last quit
	Restore unsaved changes
	Include documents on servers

	Automatically check for updates

	Editing Preferences
	Use “hard” lines in soft-wrapped views
	Soft-wrapped line indentation
	Line spacing

	Editor Defaults Preferences
	Auto-indent
	Balance while typing
	Use typographer’s quotes
	Auto-expand tabs
	Show invisible characters
	Show Spaces

	Check spelling as you type
	Default font
	Tab Width
	This option controls the default number of spaces that TextWrangler uses to represent the width of a tab character.
	Soft Wrap Text

	Keyboard Preferences
	“Home” and “End” Keys
	Enter key generates Return
	Allow Tab key to indent text blocks
	Enable Shift-Delete for forward delete
	Option-¥ on Japanese keyboards
	Emulate Emacs key bindings
	Display status window

	Languages Preferences
	Installed Languages
	Custom Extension Mappings

	Menus & Shortcuts Preferences
	Menu Key Equivalents and Item Visibility
	Available Key Combinations

	Allow menu key equivalents to autorepeat

	Printing Preferences
	Print using document’s font
	Printing font
	Frame printing area
	Print page headers
	Print full pathname
	Time stamp
	Print line numbers
	1-inch Gutter
	Print color syntax

	Text Colors Preferences
	How to Change an Element’s Color
	General
	Spaces
	Other invisibles
	Use Custom Highlight Color
	Highlight Insertion Point

	Source Code
	Markup

	Text Encodings Preferences
	Default text encoding for new documents
	If file’s encoding can’t be guessed, try

	Text Files Preferences
	Line breaks
	Ensure file ends with line break
	Strip trailing whitespace
	Backups
	Make backup before saving
	Keep historical backups
	Preserve file name extension
	Controlling Backups with Emacs Variables

	Expert preferences settings
	The Setup Window
	Bookmarks
	Filters
	Patterns

	Chapter 11 - Scripting TextWrangler
	AppleScript Overview
	About AppleScript
	Scriptable Applications and Apple Events
	Reading an AppleScript Dictionary
	Suites
	Events
	Classes and the Class Hierarchy

	Recordable Applications
	Saving Scripts
	Using Scripts with Applications
	Scripting Resources
	Books
	Discussion Groups
	Web Sites
	Software

	Using AppleScripts in TextWrangler
	Recording Actions within TextWrangler
	The Scripts Menu
	Open Script Editor
	Open Scripting Dictionary
	Open Scripts Folder
	Start Recording
	Running and Editing Scripts

	The Scripts Palette
	Organizing Scripts
	Attaching Scripts to Menu Items
	Attaching Scripts to Events
	Application attachment points
	Document attachment points
	Using Attachment Scripts
	Using an Attachment Script to Perform Authenticated Saves

	Filtering Text with AppleScripts

	TextWrangler’s Scripting Model
	Script Compatibility
	Distinguishing Between Script Elements
	Applying Commands to Text
	Documents vs. Windows
	“Lines” and “Display_lines”

	Getting and Setting Properties
	Performing Actions
	Scripting Searches
	Scripting Single Replaces
	Scripting Multi-File Searches
	Scripting the Clipboard
	Setting Text Encodings

	Arranging Documents and Windows
	Opening Documents
	Moving Documents
	Referencing Documents

	Common AppleScript Pitfalls
	The Escape Issue
	The Every Item Issue

	Chapter 12 - Unix Scripting and the Command-Line
	Configuring TextWrangler
	Syntax Coloring
	Switching Between Counterpart Files

	TextWrangler and the Unix Command Line
	Installing the Command Line Tools
	The “edit” Command Line Tool
	The “twdiff” Command Line Tool
	Invoking “twdiff” as an External Helper

	The “twfind” Command Line Tool

	Unix Scripting: Perl, Python, Ruby, Shells, and more!
	Using Unix Scripts
	Language Resources
	Setting Environment Variables for GUI Apps
	Line Endings, Permissions and Unix Scripts
	Configuring Perl
	Search Paths

	Configuring Python
	Configuring Ruby
	Shebang Menu
	Check Syntax
	Run
	Run...
	Run in Terminal
	Run in Debugger
	Run File
	Show POD/Show Module Documentation

	Filters and Scripts
	Document State

	Filters
	Scripts
	Additional Notes
	Setting Menu Keys for Scripts
	Manually Sorting the Filter and Script Lists
	Canceling Filter or Script Execution

	Chapter 13 - Language Modules
	Language Modules
	Installing Language Modules
	Overriding Existing Modules
	Codeless Language Modules
	Code-based Language Modules
	Language Module Compatibility

	Plug-In Obsolescence

	Appendix A - Command Reference
	Keyboard Shortcuts for Commands
	Assigning Keys to Menu Commands
	Available Key Combinations

	Listing by Menu and Command Name
	Listing by Default Key Equivalent

	Appendix B - Editing Shortcuts
	Mouse Commands
	Arrow and Delete Keys
	Emacs Key Bindings
	Using universal-argument

	Appendix C - Codeless Language Modules
	Creating a Module
	Required Elements
	Installing Codeless Language Modules
	Function Scanning with Regular Expressions
	Escaping Patterns
	Nested Functions

	Spell Checking Code Runs
	Starting from a Template
	CodelessLanguageModuleTemplate.plist

	Language Keys and Properties

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

