
In this part

Chapter 1
Where Do I Start?

Chapter 2
How the Web Works

Chapter 3
Some Big Concepts You

Need to Know

Getting Started Part I

3

In This Chapter

Where do I start?

What does a
web designer do?

What languages do I
need to learn?

What software and
equipment do I

need to buy?

The Web has been around for more than 20 years now, experiencing
euphoric early expansion, an economic-driven bust, an innovation-driven
rebirth, and constant evolution along the way. One thing is certain: the Web
as a communication and commercial medium is here to stay. Not only that,
it has found its way onto devices such as smartphones, tablets, TVs, and
more. There have never been more opportunities to put web design know-
how to use.

Through my experience teaching web design courses and workshops, I’ve
had the opportunity to meet people of all backgrounds who are interested in
learning how to build web pages. Allow me to introduce you to just a few:

“I’ve been a print designer for 17 years, and now I am feeling pressure to
provide web design services.”

“I work as a secretary in a small office. My boss has asked me to put together
a small internal website to share company information among employees.”

“I’ve been a programmer for years, but I want to try my hand at design. I feel
like the Web is a good opportunity to explore new skills.”

“I am an artist and I want to know how to get samples of my paintings and
sculpture online.”

“I tinkered with web pages in high school and I think it might be something
I’d like to do for a living.”

Whatever the motivation, the first question is always the same: “Where do I
start?” It may seem like there is a mountain of stuff to learn, and it’s not easy
to know where to jump in. But you have to start somewhere.

This chapter attempts to put the learning curve in perspective by answering
the most common questions I get asked by people ready to make the leap.
It provides an introduction to the disciplines, technologies, and tools associ-
ated with web design.

Where Do I
Start?

Chapter 1

Part I, Getting Started4

Where Do I Start?

Where Do I Start?
Your particular starting point will no doubt depend on your background and
goals. However, a good first step for everyone is to get a basic understanding
of how the Web and web pages work. This book will give you that foundation.
Once you learn the fundamentals, there are plenty of resources on the Web
and in bookstores for you to further your learning in specific areas.

There are many levels of involvement in web design, from building a small
site for yourself to making it a full-blown career. You may enjoy being a full-
service website developer or just specializing in one skill. There are a lot of
ways you can go.

If your involvement in web design is purely at the hobbyist level, or if you
have just one or two web projects you’d like to publish, you may find that a
combination of personal research (like reading this book), taking advantage
of available templates, and perhaps even investing in a visual web design tool
such as Adobe Dreamweaver may be all you need to accomplish the task at
hand. Many Continuing Education programs offer introductory courses to
web design and production.

If you are interested in pursuing web design or production as a career, you’ll
need to bring your skills up to a professional level. Employers may not
require a web design degree, but they will expect to see working sample sites
that demonstrate your skills and experience. These sites can be the result of
class assignments, personal projects, or a simple site for a small business or
organization. What’s important is that they look professional and have well-
written, clean HTML, style sheets, and possibly scripts behind the scenes.
Getting an entry-level job and working as part of a team is a great way to
learn how larger sites are constructed and can help you decide which aspects
of web design you would like to pursue.

What Does a Web Designer Do?
Over the years, the term “web design” has become a catchall for a process
that encompasses a number of different disciplines, from user experience
design, to document markup, to serious programming. This section
describes some of the most common roles.

If you are designing a small website on your own, you will need to wear
many hats. The good news is that you probably won’t notice. Consider that
the day-to-day upkeep of your household requires you to be part-time chef,
housecleaner, accountant, diplomat, gardener, and construction worker—
but to you it’s just the stuff you do around the house. In the same way, as a
solo web designer, you may be a part-time graphic designer, writer, HTML
author, and information architect, but to you, it’ll just feel like “making web
pages.” Nothing to worry about.

I Just Want a Blog!
You don’t necessarily need to
become a web designer to start
publishing your words and pictures
on the Web. You can start your own
“blog” or personal journal site using
one of the free or inexpensive blog
hosting services. These services
provide templates that generally
spare you the need to learn HTML
(although it still doesn’t hurt). These
are some of the most popular as of
this writing:

yy WordPress (www.wordpress.com)

yy Blogger (www.blogger.com)

yy Tumblr (www.tumblr.com)

Another drag-n-drop site design and
hosting service that goes beyond
the blog is Squarespace (www.
squarespace.com).

 The term “web design” has come to
encompass a number of disciplines,
including:

yy Visual (graphic) design

yy User interface and experience
design

yy Web document and style sheet
production

yy Scripting and programming

yy Content strategy

yy Multimedia

A T A G L A N C E

http://www.squarespace.com
http://www.squarespace.com

What Does a Web Designer Do?

Chapter 1, Where Do I Start? 5

There are also specialists out there whom you can hire to fill in the skills
you don’t have. For example, I have been creating websites since 1993 and
I still hire programmers and multimedia developers when my clients require
interactive features. That allows me to focus on the parts I do well (in my
case, it’s the content organization, interface, and visual design).

Large-scale websites are almost always created by a team of people, number-
ing from a handful to hundreds. In this scenario, each member of the team
focuses on one facet of the site-building process. If that is the case, you may be
able to simply adapt your current set of skills (writing, Photoshop, program-
ming, etc.) and interests to the new medium.

I’ve divided the myriad roles and responsibilities typically covered under the
umbrella term “web design” into four very broad categories: design, develop-
ment, content strategy, and multimedia.

Design
Ah, design! It sounds fairly straightforward, but even this simple require-
ment has been divided into a number of specializations when it comes to
creating sites. Here are a few of the new job descriptions related to designing
a site, but bear in mind that the disciplines often overlap and that the person
calling herself the “Designer” often is responsible for more than one (if not
all) of these responsibilities.

User Experience, Interaction, and User Interface design
Often, when we think of design, we think about how something looks. On
the Web, the first matter of business is designing how the site works. Before
picking colors and fonts, it is important to identify the site’s goals, how it
will be used, and how visitors move through it. These tasks fall under the
disciplines of Interaction Design (IxD), User Interface (UI) design, and User
Experience (UX) design. There is a lot of overlap between these responsibili-
ties, and it is not uncommon for one person or team to handle all three.

The goal of the Interaction Designer is to make the site as easy, efficient,
and delightful to use as possible. Closely related to interaction design is User
Interface design, which tends to be more narrowly focused on the functional
organization of the page as well as the specific tools (buttons, links, menus,
and so on) that users use to navigate content or accomplish tasks.

A more recent job title in the web design realm is the User Experience
Designer. The UX designer takes a more holistic view—ensuring the entire
experience with the site is favorable. UX design is based on a solid under-
standing of users and their needs based on observations and interviews.
According to Donald Norman (who coined the term), user experience design
includes “all aspects of the user’s interaction with the product: how it is
perceived, learned, and used.” For a website or application, that includes

If you are not interested
in becoming a jack-of-all-
trades solo web designer,
you may choose to
specialize and work as part
of a team or as a freelance
contractor.

Part I, Getting Started6

What Does a Web Designer Do?

the visual design, the user interface, the quality and message of the content,
and even overall site performance. The experience must be in line with the
organization’s brand and business goals in order to be successful.

Some of the documents an IxD, UI, or UX designer might produce include:

User research and testing reports

Understanding the needs, desires, and limitations of users is central to
the success of the design of the site or web application. This approach of
designing around the user’s needs is referred to as User Centered Design
(UCD), and it is central to contemporary design. Site designs often start
with user research, including interviews and observations, in order to
gain a better understanding of how the site can solve problems or how
it will be used. It is typical for designers to do a round of user testing at
each phase of the design process to ensure the usability of their designs.
If users are having a hard time figuring out where to find content or how
to move to the next step in a process, then it’s back to the drawing board.

Wireframe diagrams

A wireframe diagram shows the structure of a web page using only
outlines for each content type and widget (Figure 1-1). The purpose of
a wireframe diagram is to indicate how the screen real estate is divided
and indicate where functionality and content such as navigation, search
boxes, form elements, and so on, are placed, without any decoration or
graphic design. They are usually annotated with instructions for how
things should work so the development team knows what to build.

Site diagram

A site diagram indicates the structure of the site as a whole and how
individual pages relate to one another. Figure 1-2 shows a very simple
site diagram. Some site diagrams fill entire walls!

SEARCH

LOGO

[PROMOTIONAL IMAGES ROTATE HERE]

Today’s Specials

Log in or Create Account

ABOUT US
Company
News
Jobs
Policies
Contact

SOCIAL
Facebook
Twitter
Try our app

SERVICE
FAQ
Live support
Site map

Product 1 Product 2 Product 4Product 3 Product 6Product 5

Category

All categories

Category1

Category2

Category3

Category4

Category5

Category6

contact | store locator | support | CART

1 2 3 4

copyright statement

Figure 1-1.  Wireframe diagram.

text

Home page

Email
form

FAQ Book Web design
services

Resume

Info
pages

Samples

External links

Figure 1-2.  A simple site diagram.

What Does a Web Designer Do?

Chapter 1, Where Do I Start? 7

Storyboards and user flow charts

A storyboard traces the path through a site or application from the point
of view of a typical user (a persona in UX lingo). It usually includes a
script and “scenes” consisting of screen views or the user interacting
with the screen. The storyboard aims to demonstrate the steps it takes to
accomplish tasks, possible options, and also introduces some standard
page types. Figure 1-3 shows a simple storyboard. A user flow chart is
another method for showing how the parts of a site or application are
connected that tends to focus on technical details rather than telling a
story. For example, when the user does this, it triggers that function on
the server. It is common for designers to create a user flow chart for the
steps in a process such as member registration or online payments.

Figure 1-3.  A typical storyboard [courtesy of Adaptive Path; drawn by Brandon Schauer].

Visual (graphic) design
Because the Web is a visual medium, web pages require attention to pre-
sentation and design. A graphic designer creates the “look and feel” of
the site—logos, graphics, type, colors, layout, etc.—to ensure that the site
makes a good first impression and is consistent with the brand and message
of the organization it represents. Visual designers typically generate sketches
of the way the site might look, as shown in Figure 1-4. They may also be
responsible for producing the graphic files in a way that is optimized for
delivery over the Web (see Chapter 21, Lean and Mean Web Graphics for
image optimization techniques).

If you are interested in doing the visual design of commercial sites profes-
sionally, I strongly recommend graphic design training as well as a strong
proficiency in Adobe Photoshop (the industry standard) or Adobe Fireworks. Figure 1-4.  Look and feel sketches for a

simple site.

Part I, Getting Started8

What Does a Web Designer Do?

If you are already a graphic designer, you will be able to adapt your skills
to the Web easily, although this will not excuse you from acquiring a solid
understanding of HTML, CSS, and other web technologies. Because most
sites have at least a few images, even hobbyist web designers will need to
know how to create and edit images, at minimum.

Again, I want to note that all of these responsibilities may fall into the hands
of one designer who creates both the look and the functionality of a site. But
for larger sites with bigger budgets, there is an opportunity to find your own
special niche in the design process.

Development
A fair amount of the web design process involves the creation and trouble-
shooting of the documents, style sheets, scripts, and images that make up a
site. At web design firms, the team that handles the creation of the files that
make up the website (or templates for pages that get assembled dynamically)
is usually called the development or production department.

Web developers may not design the look or structure of the site themselves,
but they do need to communicate well with designers and understand the
intended site goals so they may suggest solutions that meet those goals.

The broad disciplines that fall under development are authoring, styling, and
scripting/programming.

Authoring/markup
Authoring is the term used for the process of preparing content for delivery
on the Web, or more specifically, marking up the content with HTML tags
that describe its content and function. If you want a job as a web developer,
you need to have an intricate knowledge of HTML and how it functions on
various browsers and devices. The HTML specification is constantly evolv-
ing, which means you’ll need to keep up with the latest best practices and
opportunities as well as bugs and limitations. The good news is, it’s not dif-
ficult to get started, and from there, you can gradually increase your skills.
We’ll be dabbling with HTML in Chapter 2, How the Web Works and then
discussing it in great detail in Part II of this book.

Styling
In web design, the appearance of the page in the browser is controlled by
style rules written in CSS (Cascading Style Sheets). We’ll get deep into CSS
in Part III of this book (including what “cascading” means!), but for now
just know that in contemporary web design, the appearance of the page is
handled separately from the HTML markup of the page. Again, if you are
interested in working in web development, knowing your way around CSS
and how it is supported (or not supported) by browsers is guaranteed to be
part of your job description.

Style Tiles
Another approach to capturing the
look and feel of a site is to create style
tiles, which give examples of color
schemes, branding elements, content
and UI treatments, and mood boards
without applying them to a specific
page layout. The idea is to agree
upon a consistent visual language for
the site. For more on this technique,
read the article “Style Tiles and How
They Work,” by Samantha Warren
(www.alistapart.com/articles/style-
tiles-and-how-they-work/), and visit
her excellent site where you can
download a template at styletil.es.

NO T E

Many visual designers translate their
designs into HTML and CSS documents
themselves. In fact, there is a popular
argument that in order to call yourself
a “web designer,” you must be able to
build your designs yourself, and nearly
everyone agrees that your job prospects
will be better if you are able to code as
well as design.

http://www.alistapart.com/articles/style-tiles-and-how-they-work/
http://www.alistapart.com/articles/style-tiles-and-how-they-work/

What Does a Web Designer Do?

Chapter 1, Where Do I Start? 9

Scripting and programming
As the Web has evolved into a platform of applications for getting stuff done,
programming has never been more important. JavaScript is the language that
makes elements on web pages do things. It adds behaviors and functionality
to elements in the page and even to the browser window itself.

There are other web-related programming languages as well, including PHP,
Ruby, Python, and ASP.NET, that run on the server and process data and
information before it is sent to the user’s browser. See the sidebar “Frontend
Versus Backend” for more information on what happens where.

Web scripting and programming definitely requires some traditional com-
puter programming prowess. While many web programmers have degrees
in computer science, it is also common for developers to be self-taught. A
few developers I know started by copying and adapting existing scripts, then
gradually added to their programming skills with each new project. Still, if
you have no experience with programming languages, the initial learning
curve may be a bit steep.

Teaching web programming is beyond the scope of this book. JavaScript is
introduced in Chapter 19, Introduction to JavaScript (teaching JavaScript
could fill a whole book itself). It is possible to turn out content-rich, well-
designed sites without the need for programming, so hobbyist web designers
should not be discouraged. However, once you get into collecting informa-
tion via forms or serving information on demand, it is usually necessary to
have a programmer on the team. You may also ask your hosting company
if they offer the functionality you are looking for in an easy-to-use, canned
service.

Frontend Versus Backend
You may hear web designers and developers say that they specialize in either the frontend or backend of website creation.

Frontend design
“Frontend” refers to any aspect of the design process that
appears in or relates directly to the browser. This book focuses
primarily on frontend web design.

The following tasks are commonly considered to be frontend
tasks:

yy Graphic design and image production

yy Interface design

yy Information design as it pertains to the user’s experience of
the site

yy HTML document and style sheet development

yy JavaScript

Backend development
“Backend” refers to the programs and scripts that work on the
server behind the scenes to make web pages dynamic and
interactive. In general, backend web development falls in the
hands of experienced programmers, but it is good for all web
designers to be familiar with backend functionality.

The following tasks take place on the backend:

yy Information design as it pertains to how the information is
organized on the server

yy Forms processing

yy Database programming

yy Content management systems

yy Other server-side web applications using PHP, JSP, Ruby,
ASP.NET, Java, and other programming languages

Part I, Getting Started10

What Does a Web Designer Do?

Content strategy and creation
Third on our list, though ideally first in the actual website creation process, is
the critical matter of the site’s content itself. Anyone who uses the title “web
designer” needs to be aware that everything we do supports the process of
getting the content, message, or functionality to our users. Furthermore,
good writing can help the user interfaces we create be more effective.

Of course, someone needs to create the content and maintain it—don’t
underestimate the resources required to do this successfully. In addition, I
want to call your attention to two content-related specialists on the modern
web development team: the Content Strategist and Information Architect
(IA).

When the content isn’t written right, the site can’t be fully effective. A
Content Strategist makes sure that every bit of text on a site, from long
explanatory text down to the labels on buttons, supports the brand identity
and marketing goals of the company. Content strategy may also extend to
data modeling and content management on a large and ongoing scale, such
as planning for content reuse and update schedules.

An Information Architect (also called an Information Designer) organizes
the content logically and for ease of findability. She may be responsible for
search functionality, site diagrams, and how the content and data is orga-
nized on the server. Information architecture is inevitably entwined with
UX and UI design, and it is not uncommon for a single person or team to
perform all roles.

Multimedia
One of the cool things about the Web is that you can add multimedia ele-
ments to a site, including sound, video, animation, and even interactive
games. You may decide to add multimedia skills, such as audio and video
editing or Flash development (see the “A Little More About Flash” sidebar),
to your web design tool belt, or you may decide to go all in and become a
multimedia specialist. If you are not interested in becoming a multimedia
developer, you can always hire one. Web development companies usually
look for people who have mastered the standard multimedia tools, and have
a good visual sensibility and an instinct for intuitive and creative multimedia
design.

What Languages Do I Need to Learn?

Chapter 1, Where Do I Start? 11

A Little More About Flash
Adobe Flash (previously Macromedia Flash, previously
FutureSplash) is a multimedia format created especially for the
Web. Flash is used for create full-screen animation, interactive
graphics, integrated audio and video clips, and even scriptable
games and applications, all at remarkably small file sizes.
However, recently Flash use has been on the decline due to a
number of developments, including:

yy Apple’s decision not to support Flash on its iPhones and iPads
in favor of non-proprietary HTML5 methods.

yy Adobe’s decision to stop supporting Flash (its own product)
for mobile browsers.

yy The new programmable canvas element in HTML5 that offers
some of the same functionality as Flash.

yy Criticism that Flash sometimes gets in the way of user
goals. For example, who wants to sit through a movie and
soundtrack on a restaurant site when all you really want to
know is whether they are open on Sunday?

yy The fact that a plug-in is required to play Flash media makes
some developers squeamish.

In fact, it is not uncommon to hear web professionals cite that
“Flash is dead,” but despite suddenly becoming the underdog,
Flash still has some advantages if used the right way:

yy Because it uses vector graphics, Flash files are small and can
be resized without loss of detail.

yy It is a streaming format, so movies start playing quickly and
continue to play as they download.

yy You can use ActionScript to add behaviors and advanced
interactivity, allowing Flash to be used as the frontend for
dynamically generated content or ecommerce functions.

yy The Flash plug-in is well-distributed on PCs, so support on
desktop browsers is reliable.

yy Although HTML5 is promising and rapidly evolving, as of this
writing, it cannot match the features and performance of
Flash.

Flash is not likely to disappear overnight, but even Adobe is
putting its muscle behind HTML5 alternatives.

What Languages Do I Need to Learn?
If you are a visual designer who spends time in Photoshop and Illustrator, you
may be put off by needing to learn how to create your designs with text, but I
assure you, it’s pretty simple to get started. There are also authoring tools that
speed up the production process, as we’ll discuss later in this chapter.

The following is a list of technologies associated with web development.
Which languages and technologies you learn will depend on the role you
see yourself in within the web design process. However, I advise every-
one involved in building websites to know their way around HTML and
Cascading Style Sheets, and if you want to do frontend web development
for a living, JavaScript know-how is pretty much a job requirement. More
technically inclined web professionals may take on server configurations,
databases, and site performance, but these are generally not frontend devel-
oper tasks (although a basic familiarity with the backend issues never hurts).

Web-related technologies:

yy Hypertext Markup Language (HTML)

yy Cascading Style Sheets (CSS)

yy JavaScript and DOM scripting

yy Server-side programming and database management

A t a G lance

The World Wide
Web Consortium
The World Wide Web Consortium
(called the W3C for short) is the
organization that oversees the
development of web technologies.
The group was founded in 1994 by
Tim Berners-Lee, the inventor of the
Web, at the Massachusetts Institute
of Technology (MIT).

In the beginning, the W3C concerned
itself mainly with the HTTP protocol
and the development of the HTML.
Now, the W3C is laying a foundation
for the future of the Web by
developing dozens of technologies
and protocols that must work
together in a solid infrastructure.

For the definitive answer on any web
technology question, the W3C site is
the place to go:

www.w3.org
For more information on the W3C
and what they do, see this useful
page:

www.w3.org/Consortium/

Part I, Getting Started12

What Languages Do I Need to Learn?

Hypertext Markup Language (HTML)
HTML (HyperText Markup Language) is the language used to create web
page documents. There are a few versions of HTML in use today: HTML
4.01 is the most firmly established and the newer, more robust HTML5
is gaining steam and browser support. Both versions have a stricter imple-
mentation called XHTML (eXtensible HTML), which is essentially the same
language with much stricter syntax rules. We’ll get to the particulars of what
makes the various versions different in Chapter 10, What’s Up, HTML5?.

HTML is not a programming language; it is a markup language, which
means it is a system for identifying and describing the various components
of a document such as headings, paragraphs, and lists. The markup indi-
cates the document’s underlying structure (you can think of it as a detailed,
machine-readable outline). You don’t need programming skills—only
patience and common sense—to write HTML.

The best way to learn HTML is to write out some pages by hand, as we will
be doing in the exercises in this book. If you end up working in web produc-
tion, you’ll live and breathe HTML. But even hobbyists will benefit from
knowing what is going on under the hood. The good news is that it’s simple
to learn the basics.

Cascading Style Sheets (CSS)
While HTML is used to describe the content in a web page, it is Cascading
Style Sheets (CSS) that describe how that content should look. In the web
design biz, the way the page looks is known as its presentation. That means
fonts, colors, background images, line spacing, page layout, and so on…
all controlled with CSS. With the newest version (CSS3), you can even add
special effects and basic animation to your page.

CSS also provides methods for controlling how documents will be presented
in contexts other than the traditional desktop browser, such as in print and or
on devices with small screen widths. It also has rules for specifying the non-
visual presentation of documents, such as how they will sound when read by
a screen reader (although those are not well supported).

Style sheets are also a great tool for automating production because you can
change the way an element looks across all the pages in your site by editing
a single style sheet document. Style sheets are supported to some degree by
all modern browsers.

Although it is possible to publish web pages using HTML alone, you’ll
probably want to take on style sheets so you’re not stuck with the browser’s
default styles. If you’re looking into designing websites professionally, profi-
ciency at style sheets is mandatory.

Style sheets are discussed further in Part III.

You may see HTML
and XHTML referred to
collectively as (X)HTML.

N ot e

When this book says “style sheets” it
is always referring to Cascading Style
Sheets, the standard style sheet language
for the World Wide Web.

What Languages Do I Need to Learn?

Chapter 1, Where Do I Start? 13

JavaScript/DOM scripting
JavaScript is a scripting language that is used to add interactivity and behav-
iors to web pages, including these (just to name a few):

•	 Checking form entries for valid entries

•	 Swapping out styles for an element or an entire site

•	 Making the browser remember information about the user for the next
time she visits

•	 Building interface widgets, such as expanding menus

JavaScript is used to manipulate the elements on the web page, the styles
applied to them, or even the browser itself. There are other web scripting
languages, but JavaScript (also called ECMAScript) is the standard and most
ubiquitous.

You may also hear the term DOM scripting used in relation to JavaScript.
DOM stands for Document Object Model, and it refers to the standard-
ized list of web page elements that can be accessed and manipulated using
JavaScript (or another scripting language). DOM scripting is an updated
term for what used to be referred to as DHTML (Dynamic HTML), now
considered an obsolete approach.

Writing JavaScript is a type of programming, so it may be time-consuming
to learn if you have no prior programming experience. Many people teach
themselves JavaScript by reading books and following and modifying exist-
ing examples. Most web-authoring tools come with standard scripts that you
can use right out of the box for common functions.

Professional web developers are required to know JavaScript, however, plen-
ty of visual designers rely on developers to add behaviors to their designs. So
while JavaScript is useful, learning to write it may not be mandatory for all
web designers. Teaching JavaScript is outside the scope of this book; I rec-
ommend Learning JavaScript by Shelley Powers (O’Reilly, 2006) as a good
starting place if you want to learn more.

Server-side programming
Some simple websites are collections of static HTML documents and image
files, but most commercial sites have more advanced functionality such as
forms handling, dynamically generated pages, shopping carts, content man-
agement systems, databases, and so on. These functions are handled by web
applications running on the server. There are a number of programming
languages and frameworks (listed in parentheses) that are used to create web
applications, including:

•	 PHP (CakePHP, CodeIngniter, Drupal)

•	 Python (Django, TurboGears)

The Web Design
Layer Cake
Contemporary web design is
commonly visualized as being made
up of three separate “layers.”

The content of the document with
its (X)HTML markup makes up
the Structure Layer. It forms the
foundation upon which the other
layers may be applied.

Once the structure of the document
is in place, you can add style
sheets to control how the content
should appear. This is called the
Presentation Layer.

Finally, the Behavior Layer includes
the scripts that make the page an
interactive experience.

Part I, Getting Started14

What Do I Need to Buy?

•	 Ruby (Ruby on Rails, Sinatra)

•	 JavaScript (Node.js, Rhino, SpiderMonkey)

•	 Java (Grails, Google Web Toolkit, JavaServer Faces)

•	 ASP.Net (DotNetNuke, ASP.Net MVC)

Developing web applications is programmer territory and is not expected of
all web designers. However, that doesn’t mean you can’t offer such function-
ality to your clients. It is possible to get shopping carts, content management
systems, mailing lists, and blogs as prepackaged solutions, without the need
to program them from scratch.

What Do I Need to Buy?
It should come as no surprise that professional web designers require a fair
amount of gear, both hardware and software. One of the most common
questions I’m asked by my students is, “What should I get?” I can’t tell you
specifically what to buy, but I will provide an overview of the typical tools
of the trade.

Bear in mind that while I’ve listed the most popular commercial software
tools available, many of them have freeware or shareware equivalents that
you can download if you’re on a budget (try CNET’s Download.com). With
a little extra effort, you can get a full website up and running without big
cash.

A Quick Introduction to XML
If you hang around the web design world at all, you’re sure to
hear the acronym XML (which stands for eXtensible Markup
Language). XML is not a specific language in itself, but rather a
robust set of rules for creating other markup languages.

To use a simplified example, if you were publishing recipes,
you might use XML to create a custom markup language that
includes the elements <ingredient>, <instructions>, and
<servings> that accurately describe the types of information in
your recipe documents. Once labeled correctly, that information
can be treated as data. In fact, XML has proven to be a powerful
tool for sharing data between applications. Despite the fact that
XML was developed with the Web in mind, it has actually had a
larger impact outside the web environment because of its data-
handling capabilities. There are XML files working behind the
scenes in an increasing number of software applications, such as
Microsoft Office, Adobe Flash, and Apple iTunes.

Still, there are a number of XML languages that are used on the
Web. The most prevalent is XHTML, which is HTML rewritten
according to the stricter rules of XML (we’ll talk more about
XHTML in Chapter 10, What’s Up, HTML5?). There is also RSS
(Really Simple Syndication or RDF Site Summary), which
allows your content to be shared as data and read with RSS
feed readers; SVG (Scalable Vector Graphics), which uses tags
to describe geometric shapes; and MathML, which is used to
describe mathematical notation.

As a web designer, your direct experience with XML is likely to
be limited to authoring documents in XHTML or perhaps adding
an RSS feed or SVG images to a website. Developing new XML
languages would be the responsibility of programmers or XML
specialists.

What Do I Need to Buy?

Chapter 1, Where Do I Start? 15

Equipment
For a comfortable web development environment, I recommend the follow-
ing equipment:

A solid, up-to-date computer.  Macintosh, Windows, or Linux, is fine.
Creative departments in professional web development companies tend
to be Mac-based. Although it is nice to have a super-fast machine, the
files that make up web pages are very small and tend not to be too taxing
on computers. Unless you’re getting into sound and video editing, don’t
worry if your current setup is not the very latest and greatest.

Extra memory.  Because you’ll tend to bounce between a number of applica-
tions, it’s a good idea to have enough RAM installed on your computer
that allows you to leave several memory-intensive programs running at
the same time.

A large monitor.  Although not a requirement, a large monitor makes life
easier, particularly for a visual designer. (I’ve seen code-based developers
get by just fine on an 11” MacBook Air.) The more monitor real estate
you have, the more windows and control panels you can have open at the
same time. You can also see more of your page to make design decisions.

If you’re using large monitor, just make sure you design for users with
smaller monitors and devices in mind.

A scanner and/or digital camera.  If you anticipate making your own images
and textures, you’ll need some tools for creating them. I know a designer
who has two scanners: one is the “good” scanner, and the other he uses
to scan things like dead fish and rusty pans.

A second computer.  Many web designers find it useful to have a test com-
puter running a different platform than the computer they use for devel-
opment (i.e., if you design on a Mac, test on a PC). Because browsers
work differently on Macs than on Windows machines, it’s critical to test
your pages in as many environments as possible, and particularly on the
current Windows operating system. If you are a hobbyist web designer
working at home, check your pages on a friend’s machine. Mac users
should check out the “Run Windows on Your Mac” sidebar.

Mobile devices.  The Web has gone mobile! That means it is absolutely
critical that you test the appearance and performance of your site on a
mobile browser on a smartphone or tablet device. You may already have
a smartphone yourself. If you don’t have a budget for devices with mul-
tiple platforms, ask your friends if you can spend a few minutes looking
at your site on theirs. I have one web developer friend who checks out
his designs on the phones at his local mobile carrier store (although you
might quickly wear out your welcome).

Run Windows on
Your Mac
If you have a Macintosh computer
with an Intel chip running OS X
(Leopard or later), you don’t need
a separate computer to test in a
Windows environment. It is now
possible to run Windows right on
your Mac using the free Boot Camp
application, which allows you to
switch to Windows on reboot.

There are several other VM (Virtual
Machine) products for Mac OS that
allow you to toggle between Mac
and Windows, including:

yy VMFusion (www.vmware.
com/fusion) is a commercial
product with a free trial you can
download.

yy Parallels Desktop for Mac
(www.parallels.com) is also a
commercial product with a free
trial.

yy Oracle VirtualBox (virtualbox.
org) is a free program that allows
you to run a number of guest
operating systems, including
Windows and several flavors of
Unix.

All VM products require that you
purchase a copy of Microsoft
Windows, but it sure beats buying a
whole machine.

http://www.vmware.com/fusion
http://www.vmware.com/fusion
http://www.parallels.com

Part I, Getting Started16

What Do I Need to Buy?

Software
There’s no shortage of software available for creating web pages. In the
early days, we just made do with tools originally designed for print. Today,
there are wonderful tools created specifically with web design in mind that
make the process more efficient. Although I can’t list every available soft-
ware release, I’d like to introduce you to the most common and proven web
design tools. Note that you can download trial versions of many of these
programs from the company websites, as listed in the “Popular Web Design
Software Links” sidebar later in this chapter.

Web page authoring
Web-authoring tools are similar to desktop publishing tools, but the end
product is a web page (an HTML file and its supporting files). These tools
provide a visual “WYSIWYG” (What You See Is What You Get, pronounced
“whizzy-wig”) interface and shortcuts that save you from typing repetitive
HTML and CSS. These tools won’t excuse you from learning HTML. Even
the most sophisticated tools won’t generate HTML as clean or well-consid-
ered as a professional writing by hand, but they can speed up the process
once you know what you’re doing.

The following are some popular web-authoring programs:

Adobe Dreamweaver. This is the hands-down industry standard due to its
relatively clean code and advanced features.

Microsoft Expression Web (Windows only).  Part of Microsoft’s suite of
professional design tools, MS Expression Web boasts standards-compli-
ant code and CSS-based layouts.

Nvu (Linux, Windows, and Mac OS X). Don’t want to pay for a WYSIWYG
editor? Nvu (pronounced N-view, for “new view”) is an open source tool
that matches many of the features in Dreamweaver, and you can down-
load it for free at nvu.com.

HTML editors
HTML editors (as opposed to WYSIWYG authoring tools) are designed to
speed up the process of writing HTML by hand. They do not allow you edit
the page visually, so you need to check your work in a browser. Many profes-
sional web designers actually prefer to author HTML documents by hand,
and they tend to recommend the following:

TextPad (Windows only). TextPad is a simple and inexpensive plain-text
code editor for Windows.

Sublime Text (Window, Mac, Linux). This inexpensive and up-and-coming
text editor looks stripped down but has a lot of functionality (like color
coding and full code overviews) that developers love.

NO T E

To do the exercises in this book, all
you’ll need is the text editor that came
with your operating system. No special
programs are required.

What Do I Need to Buy?

Chapter 1, Where Do I Start? 17

Coda by Panic (Macintosh only). Coda users like its visual workflow, file
management tools, and built-in terminal access.

TextMate by MacroMates (Macintosh only).  This advanced text editor
features project management tools and an interface that is integrated
with the Mac operating system. It is growing in popularity because it is
customizable, feature-rich, and inexpensive.

BBEdit by Bare Bones Software (Macintosh only).  Lots of great shortcut
features have made this the leading editor for Mac-based web developers.

Image editing and drawing software
You’ll probably want to add images to your pages, so you will need an
image-editing program. We’ll look at some of the more popular programs
in greater detail in Part IV. In the meantime, you may want to look into the
following popular web-graphics-creation tools:

Adobe Photoshop.  Photoshop is undeniably the industry standard for
image creation in both the print and web worlds.

Adobe Photoshop Elements.  This lighter version of Photoshop is designed
for photo editing and management, but some hobbyists may find that it
has all the tools necessary for putting images on web pages.

Adobe Illustrator.  Because designers need to create logos, icons, and illus-
trations at a variety of sizes and resolutions, many start with a vector
image in Illustrator for maximum flexibility. You can output web graph-
ics directly from Illustrator, or bring them into Photoshop for additional
fine-tuning.

Adobe Fireworks.  This web graphics program combines an image edi-
tor with tools for creating vector-based illustrations. It also features
advanced tools for outputting web graphics.

Corel Paint Shop Pro Photo (Windows only).  This full-featured image edi-
tor is popular with the Windows crowd, primarily due to its low price.

GIMP, “GNU Image Manipulation Program” (Unix, Windows, Mac). This
free image-editing program is similar to Photoshop.

Internet tools
Because you will be dealing with the Internet, you need to have some tools
specifically for viewing and moving files over the network:

A variety of browsers. Because browsers render pages differently, you’ll
want to test your pages on as many browsers as possible, both on the
desktop and on mobile devices. The following lists the desktop browsers
most commonly used on Windows and Macintosh operating systems:

Part I, Getting Started18

What Do I Need to Buy?

Windows: Macintosh OS X:

Internet Explorer
(the current version and at least two prior versions)

Chrome

Firefox

Safari

Opera

Safari

Chrome

Firefox

Opera

And don’t ignore the mobile browsers! The following list is an overview
of the most commonly used mobile web browsers as of this writing
(although who knows what mobile browsers will be important by the
time you read this):

•	 Mobile Safari (iOS)

•	 Android Browser (Android)

•	 BlackBerry Browser (RIM)

•	 Nokia Series 40 and Nokia Browser for Symbian

•	 Opera Mobile and Mini (installed on any device)

•	 Internet Explorer Mobile (Windows Phone)

•	 Silk (Kindle Fire)

A file-transfer program (FTP). An FTP program enables you to upload and
download files between your computer and the computer that will serve
your pages to the web. The web authoring tools listed earlier all have FTP
programs built right in. There are also dedicated FTP programs, as listed here:

Windows Macintosh OS X:

WS_FTP

CuteFTP

AceFTP

Filezilla

Transmit

Cyberduck

Fetch

Terminal application. If you know your way around the Unix operat-
ing system, you may find it useful to have a terminal (command-line)
application that allows you to type Unix commands on the server. This
may be useful for setting file permissions, moving or copying files and
directories, or managing the server software.

Windows users can install a Linux emulator called Cygwin for command-
line access. There is also PuTTY, a free Telnet/SSH client. Mac OS X
includes an application called Terminal that is a full-fledged terminal
application, giving you access to the underlying Unix system and the abil-
ity to use SSH to access other command-line systems over the Internet.

What You’ve Learned

Chapter 1, Where Do I Start? 19

Popular Web Design Software Links

Web page authoring
Adobe Dreamweaver www.adobe.com
Microsoft Expression Web www.microsoft.com/products/

expression
Nvu (open source web page editor) www.nvu.com

HTML editing
TextMate by MacroMates for Mac OS www.macromates.com
Sublime Text www.sublimetext.com
TextPad for Windows www.textpad.com
Coda by Panic Software www.panic.com/coda/
BBEdit by Bare Bones Software www.barebones.com

Image editing and drawing
Adobe Photoshop www.adobe.com
Adobe Photoshop Elements www.adobe.com
Adobe Illustrator www.adobe.com
Adobe Fireworks www.adobe.com
Corel Paint Shop Pro Photo www.corel.com/paintshoppro
GIMP gimp.org

Browsers
Microsoft Internet Explorer (Windows only) www.microsoft.com/

windows/internet-explorer/
Firefox www.firefox.com
Google Chrome www.google.com/chrome
Opera www.opera.com
Safari www.apple.com/safari

Networking
WS_FTP, CuteFTP, AceFTP, and others for Windows available at:

www.download.com
Transmit (for Macintosh OSX) www.panic.com/transmit
Cyberduck (for Macintosh OSX) cyberduck.ch
Fetch (for Macintosh OSX) fetchsoftworks.com
Cygwin (Linux emulator for Windows) www.cygwin.com
PuTTY (telnet/SSH terminal emulator) www.chiark.greenend.org.

uk/~sgtatham/putty/

A T A G L A N C E

What You’ve Learned
The lesson to take away from this chapter is: “You don’t have to learn every-
thing.” And even if you want to learn everything eventually, you don’t need
to learn it all at once. So relax, and don’t worry. The other good news is that,
while many professional tools exist, it is possible to create a basic website and
get it up and running without spending much money by using freely avail-
able or inexpensive tools and your existing computer setup.

As you’ll soon see, it’s easy to get started making web pages—you will be able
to create simple pages by the time you’re done reading this book. From there,
you can continue adding to your bag of tricks and find your particular niche
in web design.

http://www.cygwin.com
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Part I, Getting Started20

Test Yourself

Test Yourself
Each chapter in this book ends with a few questions that you can answer to
see if you picked up the important bits of information. Answers appear in
Appendix A.

1.	 Match these web professionals with the final product they might be
responsible for producing.

A. Graphic designer

B. Production department

C. User experience designer

D. Web programmer

_____ HTML and CSS documents

_____ PHP scripts

_____ Photoshop page sketch

_____ Storyboards

2.	 What does the W3C do?

3.	 Match the web technology with its appropriate task:

A. HTML

B. CSS

C. JavaScript

D. PHP

E. XML

_____ Checks a form field for a valid entry

_____ �Creates a custom server-side web applica-
tion

_____ Identifies text as a second-level heading

_____ �Defines a new markup language for shar-
ing financial information

_____ Makes all second-level headings blue

4.	 What is the difference between frontend and backend web development?

5.	 What is the difference between a web-authoring program and an HTML-
editing tool?

exercise 1-1  | 
Taking stock
Now that you’re taking that first step
in learning web design, it might be
a good time to take stock of your
assets and goals. Using the lists in this
chapter as a general guide, try jotting
down answers to the following
questions:

yy What are your web design goals?
To become a professional web
designer? To make personal
websites only? 

yy Which aspects of web design
interest you the most?

yy What current skills do you have
that will be useful in creating web
pages?

yy Which skills will you need to brush
up on?

yy Which hardware and software
tools do you already have for web
design?

yy Which tools do you need to buy?
Which tools would you like to buy
eventually?

21

In This Chapter

An explanation of
the Web, as it relates

to the Internet

The role of the server

The role of the browser

Introduction to URLs and
their components

The anatomy of a web page

I got started in web design in early 1993—pretty close to the start of the Web
itself. In web time, that makes me an old-timer, but it’s not so long ago that
I can’t remember the first time I looked at a web page. It was difficult to tell
where the information was coming from and how it all worked.

This chapter sorts out the pieces and introduces some basic terminology.
We’ll start with the big picture and work down to specifics.

The Internet Versus the Web
No, it’s not a battle to the death, just an opportunity to point out the distinction
between these two words that are increasingly being used interchangeably.

The Internet is a network of connected computers. No company owns the
Internet; it is a cooperative effort governed by a system of standards and
rules. The purpose of connecting computers together, of course, is to share
information. There are many ways information can be passed between
computers, including email, file transfer (FTP), and many more specialized
modes upon which the Internet is built. These standardized methods for
transferring data or documents over a network are known as protocols.

The Web (originally called the World Wide Web, thus the “www” in
site addresses) is just one of the ways information can be shared over the
Internet. It is unique in that it allows documents to be linked to one another
using hypertext links—thus forming a huge “web” of connected informa-
tion. The Web uses a protocol called HTTP (HyperText Transfer Protocol).
That acronym should look familiar because it is the first four letters of nearly
all website addresses, as we’ll discuss in an upcoming section.

Serving Up Your Information
Let’s talk more about the computers that make up the Internet. Because they
“serve up” documents upon request, these computers are known as servers.
More accurately, the server is the software (not the computer itself) that

The Web is a subset of
the Internet. It is just one
of many ways information
can be transferred over
networked computers.

How the Web
Works

Chapter 2

Part I, Getting Started22

Serving Up Your Information

allows the computer to communicate with other computers; however, it is
common to use the word “server” to refer to the computer as well. The role
of server software is to wait for a request for information, then retrieve and
send that information back as quickly as possible.

There’s nothing special about the computers themselves…picture anything
from a high-powered Unix machine to a humble personal computer. It’s the
server software that makes it all happen. In order for a computer to be part
of the Web, it must be running special web server software that allows it to
handle Hypertext Transfer Protocol transactions. Web servers are also called
“HTTP servers.”

There are many server software options out there, but the two most popular
are Apache (open source software) and Microsoft Internet Information
Services (IIS). Apache is freely available for Unix-based computers and
comes installed on Macs running Mac OS X. There is a Windows version as
well. Microsoft IIS is part of Microsoft’s family of server solutions.

Every computer and device (modem, router, smartphone, cars, etc.) con-
nected to the Internet is assigned a unique numeric IP address (IP stands
for Internet Protocol). For example, the computer that hosts oreilly.com
has the IP address 208.201.239.100. All those numbers can be dizzying, so
fortunately, the Domain Name System (DNS) was developed to allow us to
refer to that server by its domain name, “oreilly.com”, as well. The numeric
IP address is useful for computer software, while the domain name is more
accessible to humans. Matching the text domain names to their respective
numeric IP addresses is the job of a separate DNS server.

It is possible to configure your web server so that more than one domain
name is mapped to a single IP address, allowing several sites to share a single
server.

No More IP Addresses
The IANA, the organization that assigns IP numbers, handed out its last bundle of IP
addresses on February 3, 2011. That’s right, no more ###.###.###.###-style IPs. That
format of IP address (called IPv4) is able to produce 4.3 billion unique addresses,
which seemed like plenty when the Internet “experiment” was first conceived in 1977.
There was no way the creators could anticipate that one day every phone, television,
and object on store shelves would be clamoring for one.

The solution is a new IP format (IPv6, already in the works) that allows for trillions
and trillions of unique IP numbers, with the slight snag that it is incompatible with
our current IPv4-based network, so IPv6 will operate as a sort of parallel Internet to
the one we have today. Eventually, IPv4 will be phased out, but some say it will take
decades.

A Brief History
of the Web
The Web was born in a particle
physics laboratory (CERN) in
Geneva, Switzerland in 1989. There
a computer specialist named Tim
Berners-Lee first proposed a system
of information management that
used a “hypertext” process to link
related documents over a network.
He and his partner, Robert Cailliau,
created a prototype and released it
for review. For the first several years,
web pages were text-only. It’s difficult
to believe that in 1992, the world had
only about 50 web servers, total.

The real boost to the Web’s
popularity came in 1992 when the
first graphical browser (NCSA Mosaic)
was introduced, and the Web broke
out of the realm of scientific research
into mass media. The ongoing
development of web technologies
is overseen by the World Wide Web
Consortium (W3C).

If you want to dig deeper into the
Web’s history, check out this site:

W3C’s History Archives
www.w3.org/History.html

Open Source
Open source software is developed as
a collaborative effort with the intent
to make its source code available
to other programmers for use and
modification. Open source programs
are usually available for free.

T e r m i n o l o g y

A Word About Browsers

Chapter 2, How the Web Works 23

A Word About Browsers
We now know that the server does the servin’, but what about the other half
of the equation? The software that does the requesting is called the client.
People use desktop browsers, mobile browsers, and other assistive technolo-
gies (such as screen readers) as clients to access documents on the Web. The
server returns the documents for the browser (also referred to as the user
agent in technical circles) to display.

The requests and responses are handled via the HTTP protocol, mentioned
earlier. Although we’ve been talking about “documents,” HTTP can be used
to transfer images, movies, audio files, data, scripts, and all the other web
resources that commonly make up web sites and applications.

It is common to think of a browser as a window on a computer monitor with
a web page displayed in it. These are known as graphical browsers or desk-
top browsers and for a long time, they were the only web-viewing game in
town. The most popular desktop browsers as of this writing include Internet
Explorer for Windows, Chrome, Firefox, and Safari, with Opera bringing up
the rear. These days, however, more and more people are accessing the Web
on the go using browsing clients built into mobile phones or tablets.

It is also important to keep alternative web experiences in mind. Users with
sight disabilities may be listening to a web page read by a screen reader (or
simply make their text extremely large). Users with limited mobility may
use assistive devices to access links and to type. The sites we build must be
accessible and usable for all users, regardless of their browsing experiences.

Even on the desktop browsers that first introduced us to the wide world of
the Web, pages may look and perform differently from browser to browser.
This is due to varying support for web technologies and the users’ ability to
set their own browsing preferences.

Intranets and Extranets
When you think of a website, you generally assume that it is accessible to anyone
surfing the Web. However, many companies take advantage of the awesome
information sharing and gathering power of websites to exchange information just
within their own business. These special web-based networks are called intranets.
They are created and function like ordinary websites, but they use special security
devices (called firewalls) that prevent the outside world from seeing them. Intranets
have lots of uses, such as sharing human resource information or providing access to
inventory databases.

An extranet is like an intranet, only it allows access to select users outside of the
company. For instance, a manufacturing company may provide its customers with
passwords that allow them to check the status of their orders in the company’s
orders database. Of course, the passwords determine which slice of the company’s
information is accessible.

Server-side and
Client-side
Often in web design, you’ll hear
reference to “client-side” or “server-
side” applications. These terms are
used to indicate which machine
is doing the processing. Client-
side applications run on the
user’s machine, while server-side
applications and functions use the
processing power of the server
computer.

T e r m i n o l o g y

Part I, Getting Started24

Web Page Addresses (URLs)

Web Page Addresses (URLs)
Every page and resource on the Web has its own special address called a
URL, which stands for Uniform Resource Locator. It’s nearly impossible to
get through a day without seeing a URL (pronounced “U-R-L,” not “erl”)
plastered on the side of a bus, printed on a business card, or broadcast on
a television commercial. Web addresses are fully integrated into modern
vernacular.

Some URLs are short and sweet. Others may look like crazy strings of char-
acters separated by dots (periods) and slashes, but each part has a specific
purpose. Let’s pick one apart.

The parts of a URL
A complete URL is generally made up of three components: the protocol,
the site name, and the absolute path to the document or resource, as shown
in Figure 2-1.

http:// www.example .com /2011/samples/first.html

Host name Domain name

Protocol1 Name of site2 Absolute path3

Directory path Document

Figure 2-1.  The parts of a URL.

	➊	 http://

The first thing the URL does is define the protocol that will be used for
that particular transaction. The letters HTTP let the server know to use
Hypertext Transfer Protocol, or get into “web mode.”

	➋	 www.example.com

The next portion of the URL identifies the website by its domain name.
In this example, the domain name is example.com. The “www.” part at
the beginning is the particular host name at that domain. The host name
“www” has become a convention, but is not a rule. In fact, sometimes
the host name may be omitted. There can be more than one website at a
domain (sometimes called subdomains). For example, there might also
be development.example.com, clients.example.com, and so on.

➌	 /2012/samples/first.html

This is the absolute path through directories on the server to the request-
ed HTML document, first.html. The words separated by slashes are the
directory names, starting with the root directory of the host (as indicated
by the initial /). Because the Internet originally comprised computers
running the Unix operating system, our current way of doing things still

Hey, There’s No
http:// on That URL!
Because nearly all web pages use
the Hypertext Transfer Protocol, the
http:// part is often just implied.
This is the case when site names are
advertised in print or on TV, as a way
to keep the URL easy to remember.

Additionally, browsers are
programmed to add http://
automatically as a convenience to
save you some keystrokes. It may
seem like you’re leaving it out, but it
is being sent to the server behind the
scenes.

When we begin using URLs to create
hyperlinks in HTML documents in
Chapter 6, Adding Links, you’ll learn
that it is necessary to include the
protocol when making a link to a
web page on another server.

N ot e

Sometimes you’ll see a URL that begins
with https://. This is an indication that
it is a secure server transaction. Secure
servers have special encryption devices
that hide delicate content, such as credit
card numbers, while they are trans-
ferred to and from the browser. Look for
it the next time you’re shopping online.

Web Page Addresses (URLs)

Chapter 2, How the Web Works 25

follows many Unix rules and conventions, hence the / separating direc-
tory names.

To sum it up, the URL in Figure 2-1 says it would like to use the HTTP
protocol to connect to a web server on the Internet called www.example.com
and request the document first.html (located in the samples directory, which
is in the 2012 directory).

Default files
Obviously, not every URL you see is so lengthy. Many addresses do not
include a filename, but simply point to a directory, like these:

http://www.oreilly.com
http://www.jendesign.com/resume/

When a server receives a request for a directory name rather than a specific file,
it looks in that directory for a default document, typically named index.html.
So when someone types the above URLs into their browser, what they’ll actu-
ally see is this:

http://www.oreilly.com/index.html
http://www.jendesign.com/resume/index.html

The name of the default file (also referred to as the index file) may vary, and
depends on how the server is configured. In these examples, it is named
index.html, but some servers use the filename default.htm. If your site uses
server-side programming to generate pages, the index file might be named
index.php or index.asp. Just check with your server
administrator or the tech support department at your
hosting service to make sure you give your default file
the proper name.

Another thing to notice is that in the first example, the
original URL did not have a trailing slash to indicate it
was a directory. When the slash is omitted, the server
simply adds one if it finds a directory with that name.

The index file is also useful for security. Some servers
(depending on their configuration) display the contents
of the directory if the default file is not found. Figure
2-2 shows how the documents in the housepics direc-
tory are exposed as the result of a missing default file.
One way to prevent people from snooping around in
your files is to be sure there is an index file in every
directory. Your server administrator may also add
other protections to prevent your directories from dis-
playing in the browser.

Providing the URL for a directory (rather
than a specific filename) prompts the server
to look for a default file, typically called
index.html.

index.html

Some servers are configured to return a listing of the
contents of that directory if the default file is not found.

Figure 2-2.  Some servers display the
contents of the directory if an index file is
not found.

Part I, Getting Started26

The Anatomy of a Web Page

The Anatomy of a Web Page
We’re all familiar with what web pages look like in the browser window, but
what’s happening “under the hood?”

At the top of Figure 2-3, you see a minimal web page as it appears in a
graphical browser. Although you see it as one coherent page, it is actually
assembled from four separate files: an HTML document (index.html), a style
sheet (kitchen.css), and two graphics (foods.gif and spoon.gif). The HTML
document is running the show.

HTML documents
You may be as surprised as I was to learn that the graphically rich and inter-
active pages we see on the Web are generated by simple, text-only docu-
ments. This text file is referred to as the source document.

Take a look at index.html, the source document for the Jen’s Kitchen web
page. You can see it contains the text content of the page plus special tags
(indicated with angle brackets, < and >) that describe each element on the
page.

Adding descriptive tags to a text document is known as “marking up” the
document. Web pages use a markup language called HyperText Markup
Language, or HTML for short, which was created especially for documents
with hypertext links. HTML defines dozens of text elements that make up
documents such as headings, paragraphs, emphasized text, and of course,
links. There are also elements that add information about the document
(such as its title), media such as images and videos, and widgets for form
inputs, just to name a few.

It is worth noting briefly that there are actually several versions of HTML
in use today. The most firmly established are HTML version 4.01 and its
stricter cousin, XHTML 1.0. And you may have heard how all the Web is
a-buzz with the emerging HTML5 specification that is designed to better
handle web applications and is gradually gaining browser support. I will give
you the lowdown on all the various versions and what makes them unique in
Chapter 10, What’s Up, HTML5?. In the meantime, we have to cover some
basics that apply regardless of the HTML flavor you choose.

A quick introduction to HTML markup
You’ll be learning the nitty-gritty of markup in Part II, so I don’t want to bog
you down with too much detail right now, but there are a few things I’d like
to point out about how HTML works and how browsers interpret it.

Read through the HTML document in Figure 2-3 and compare it to the
browser results. It’s easy to see how the elements marked up with HTML
tags in the source document correspond to what displays in the browser
window.

exercise 2-1  | 
View source
You can see the HTML file for any
web page by choosing View ➝
Page Source or (View ➝ Source) in
your browser’s menu. Your browser
typically opens the source document
in a separate window. Let’s take a
look under the hood of a web page.

1.	 Enter this URL into your browser:

www.learningwebdesign.com/4e/
materials/chapter02/kitchen.html
You should see the Jen’s Kitchen
web page from Figure 2-3.

2.	 Select View → Page Source (or
View → Source) from the browser
menu. On Chrome and Opera,
View Source is located in the
Developer menu. A window
opens showing the source
document shown in the figure.

3.	 The source for most sites is
considerably more complicated.
View the source of oreilly.com
or the site of your choice. Don’t
worry if you don’t understand
what’s going on. Much of it will
look more familiar by the time you
are done with this book.

WA R NIN G

Keep in mind that while learning
from others’ work is fine, the all-
out stealing of other people’s code
is poor form (or even illegal). If
you want to use code as you see it,
ask for permission and always give
credit to those who did the work.

The Anatomy of a Web Page

Chapter 2, How the Web Works 27

<!DOCTYPE html>
<html>
<head>
<title>Jen's Kitchen</title>
<link rel="stylesheet" href="kitchen.css" type="text/css" >
</head>

<body>
<h1> Jen’s Kitchen</h1>

<p>If you love to read about cooking and eating, would like to find out about
of some of the best restaurants in the world, or just want a few choice recipes to add to your
collection, this is the site for you!</p>

<p> Your pal, Jen at Jen's Kitchen</p>
<hr>
<p><small>Copyright 2011, Jennifer Robbins</small></p>
</body>
</html>

index.html

The web page shown in this
browser window consists of
four separate �les: an HTML
text document, a style sheet
and two images. Tags in the
HTML source document give
the browser instructions for
how the text is structured and
where the images should be
placed.

body { font: normal 1em Verdana; margin: 1em 10%;}
h1 { font: italic 3em Georgia; color: rgb(23, 109, 109); margin: 1em 0 1em;}
img { margin: 0 20px 0 0; }
h1 img { margin-bottom: -20px; }
small { color: #666666; }

kitchen.css

foods.gif spoon.gif

Figure 2-3.  The source file and images that make up a simple web page.

Part I, Getting Started28

The Anatomy of a Web Page

First, you’ll notice that the text within brackets (for example, <body>) does
not display in the final page. The browser displays only what’s between the
tags—the content of the element. The markup is hidden. The tag provides
the name of the HTML element—usually an abbreviation such as “h1” for
“heading level 1,” or “em” for “emphasized text.”

Second, you’ll see that most of the HTML tags appear in pairs surrounding
the content of the element. In our HTML document, <h1> indicates that the
following text should be a level-1 heading; </h1> indicates the end of the
heading. Some elements, called empty elements, do not have content. In our
sample, the <hr> tag indicates an empty element that tells the browser to
“insert a thematic divider here” (most browsers indicate the thematic divider
with a horizontal rule [line], which is how the hr element got its initials).

Because I was unfamiliar with computer programming when I first began
writing HTML, it helped me to think of the tags and text as “beads on a
string” that the browser interprets one by one, in sequence. For example,
when the browser encounters an open bracket (<), it assumes all of the fol-
lowing characters are part of the markup until it finds the closing bracket
(>). Similarly, it assumes all of the content following an opening <h1> tag is a
heading until it encounters the closing </h1> tag. This is the manner in which
the browser parses the HTML document. Understanding the browser’s
method can be helpful when troubleshooting a misbehaving HTML docu-
ment.

But where are the pictures?
Obviously, there are no pictures in the HTML file itself, so how do they get
there when you view the final page?

You can see in Figure 2-3 that each image is a separate file. The images are
placed in the flow of the text with the HTML image element (img) that tells
the browser where to find the graphic (its URL). When the browser sees the
img element, it makes another request to the server for the image file, and
then places it in the content flow. The browser software brings the separate
pieces together into the final page. Videos and other embedded media files
are added in much the same way.

The assembly of the page generally happens in an instant, so it appears as
though the whole page loads all at once. Over slow connections or if the
page includes huge graphics or media files, the assembly process may be
more apparent as images lag behind the text. The page may even need to be
redrawn as new images arrive (although you can construct your pages in a
way to prevent that from happening).

The Anatomy of a Web Page

Chapter 2, How the Web Works 29

Adding a little style
I want to direct your attention to one last key ingredient of our minimal
page. Near the top of the HTML document there is a link element that
points to the style sheet document kitchen.css. That style sheet includes a
few lines of instructions for how the page should look in the browser. These
are style instructions written according to the rules of Cascading Style Sheets
(CSS). CSS allows designers to add visual style instructions (known as the
document’s presentation) to the marked-up text (the document’s structure,
in web design terminology). In Part III, you’ll really get to know the power
of Cascading Style Sheets.

Figure 2-4 shows the Jen’s Kitchen page with and without the style instruc-
tions. Browsers come equipped with default styles for every HTML element
they support, so if an HTML document lacks its own custom style instruc-
tions, the browser will use its own (that’s what you see in the screen shot
on the right). Even just a few style rules can make big improvements to the
appearance of a page.

Figure 2-4.  The Jen’s Kitchen page before (left) and after (right) style rules.

Adding Behaviors with JavaScript
In addition to a document’s structure and presentation, there is also a behavior
component that defines how things work. On the Web, behaviors are defined
by a scripting language called JavaScript. We’ll touch on it lightly in this book in
Part IV, but learning JavaScript from scratch is more than we can take on here.
Many designers (myself included) rely on people with scripting experience to add
functionality to sites. However, knowing how to write JavaScript is becoming more
essential to the “web designer” job description.

Part I, Getting Started30

Putting It All Together

Putting It All Together
To wrap up our introduction to how the web works, let’s trace a typical
stream of events that occurs with every web page that appears on your screen
(Figure 2-5).

➊ �You request a web page by either typing its URL (for example, http://
jenskitchensite.com) directly in the browser or by clicking on a link on a
page. The URL contains all the information needed to target a specific
document on a specific web server on the Internet.

➋ �Your browser sends an HTTP Request to the server named in the URL
and asks for the specific file. If the URL specifies a directory (not a file),
it is the same as requesting the default file in that directory.

➌ The server looks for the requested file and issues an HTTP response.

a.	 If the page cannot be found, the server returns an error message. The
message typically says “404 Not Found,” although more hospitable
error messages may be provided.

b.	 If the document is found, the server retrieves the requested file and
returns it to the browser.

➍ �The browser parses the HTML document. If the page contains images
(indicated by the HTML img element) or other external resources like
scripts, the browser contacts the server again to request each resource
specified in the markup.

➎ �The browser inserts each image in the document flow where indicated
by the img element. And voila! The assembled web page is displayed for
your viewing pleasure.

Putting It All Together

Chapter 2, How the Web Works 31

4 The browser parses the
document. If it has images, style
sheets, and scripts, the browser
contacts the server again for each
resource.

5 The page is assembled in
the browser window.

HTTP request

HTTP response

2 The browser sends
an HTTP request.

Server

Oops, no file

If the file is not on the server,
it returns an error message.

Server Contents

index.html

Browser

1 Type in a URL or click on a link in the browser.

3 The server looks for the file and
responds with an HTTP response.

“I see that you requested a directory,
so I’m sending you the default file,
index.html. Here you go.”

kitchen.gif

spoon.gif

index.html

kitchen.css

kitchen.css

kitchen.gif

spoon.gif

Figure 2-5.  How browsers display web pages.

Part I, Getting Started32

Test Yourself

Test Yourself
Let’s play a round of “Identify that Acronym!” The following are a few basic
web terms mentioned in this chapter. Answers are in Appendix A.

1) HTML ______  a) Home of Mosaic, the first graphical browser

2) W3C ______  b) The location of a web document or resource

3) CERN ______  c) �The markup language used to describe web content

4) CSS ______  d) �Matches domain names with numeric IP addresses

5) HTTP ______  e) A protocol for file transfer

6) IP ______  f) �Protocol for transferring web documents on the
Internet

7) URL ______  g) �The language used to instruct how web content
looks

8) NCSA ______  h) Particle physics lab where the Web was born

9) DNS ______  i) Internet Protocol

10) FTP ______  j) The organization that monitors web technologies

In This Part

Chapter 4
Creating a Simple Page

(HTML Overview)

Chapter 5
Marking Up Text

Chapter 6
Adding Links

Chapter 7
Adding Images

Chapter 8
Table Markup

Chapter 9
Forms

Chapter 10
What's up, HTML5?

HTML Markup
for Structure Part II

49

In This Chapter

An introduction to
elements and attributes

A step-by-step demo
of marking up

a simple web page

The elements that provide
document structure

A simple stylesheet

Troubleshooting
broken web pages

Part I provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start cre-
ating a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step by step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

•	 Get a feel for how markup works, including an understanding of ele-
ments and attributes.

•	 See how browsers interpret HTML documents.

•	 Learn the basic structure of an HTML document.

•	 Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules
at this point; we’ll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A Web Page, Step by Step
You got a look at an HTML document in Chapter 2, How the Web Works,
but now you’ll get to create one yourself and play around with it in the
browser. The demonstration in this chapter has five steps that cover the
basics of page production.

Step 1: Start with content.  As a starting point, we’ll write up raw text con-
tent and see what browsers do with it.

Step 2: Give the document structure.  You’ll learn about HTML element
syntax and the elements that give a document its structure.

Creating a
Simple Page

Chapter 4

(HTML Overview)

Part II, HTML Markup for Structure50

Before We Begin, Launch a Text Editor

Step 3: Identify text elements.  You’ll describe the content using the appro-
priate text elements and learn about the proper way to use HTML.

Step 4: Add an image.  By adding an image to the page, you’ll learn about
attributes and empty elements.

Step 5: Change the page appearance with a style sheet.  This exercise gives
you a taste of formatting content with Cascading Style Sheets.

By the time we’re finished, you will have written the source document for
the page shown in Figure 4-1. It’s not very fancy, but you have to start
somewhere.

We’ll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it is helpful to see the cause and effect of each small
change to the source file along the way.

Before We Begin, Launch a Text Editor
In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain text files with the .html exten-
sion. If you have a WYSIWYG web-authoring tool such as Dreamweaver, set
it aside for now. I want you to get a feel for marking up a document manu-

ally (see the sidebar “HTML the
Hard Way”).

This section shows how to open
new documents in Notepad and
TextEdit. Even if you’ve used these
programs before, skim through for
some special settings that will make
the exercises go more smoothly.
We’ll start with Notepad; Mac users
can jump ahead.

HTML the Hard Way
I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, then
opening your page in a browser. It
doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use a
web-authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you’re seeing. It
is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually because it gives
them better control over the code
and allows them to make deliberate
decisions about what elements are
used.

Figure 4-1.  In this chapter, we’ll write the
source document for this page step by
step.

Before We Begin, Launch a Text Editor

Chapter 4, Creating a Simple Page 51

Creating a new document in Notepad (Windows)
These are the steps to creating a new document in Notepad on Windows 7
(Figure 4-2):

1.	 Open the Start menu and navigate to Notepad (in Accessories). 1

2.	 Click on Notepad to open a new document window, and you’re ready
to start typing. 2

3.	 Next, we’ll make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Select “Folder Options…” from the Tools menu 3 and select the View
tab 4. Find “Hide extensions for known file types” and uncheck that
option. 5 Click OK to save the preference, and the file extensions will
now be visible.

1 Open the Start menu and navigate to Notepad (All Programs > Accessories > Notepad)

2Clicking on Notepad will
open a new document.

3To make the extensions visible go to My Computer > Tools > Folder Options

4
Select the View tab.

5
Find “Hide extensions
for known file types”

and uncheck. Then click
OK to save preference.

Figure 4-2.  Creating a new document in Notepad.

NO T E

In Windows 7, hit the ALT key to reveal
the menu to access Tools and Folder
Options. In Windows Vista, it is labeled
"Folder and Search Options."

Part II, HTML Markup for Structure52

Before We Begin, Launch a Text Editor

Creating a new document in TextEdit (Mac OS X)
By default, TextEdit creates “rich text” documents, that is, documents that
have hidden style formatting instructions for making text bold, setting font
size, and so on. You can tell that TextEdit is in rich text mode when it has
a formatting toolbar at the top of the window (plain text mode does not).
HTML documents need to be plain text documents, so we’ll need to change
the Format, as shown in this example (Figure 4-3).

1.	 Use the Finder to look in the Applications folder for TextEdit. When
you’ve found it, double-click the name or icon to launch the application.

2.	 TextEdit opens a new document. The text-formatting menu at the top
shows that you are in Rich Text mode. Here’s how you change it.

3.	 Open the Preferences dialog box from the TextEdit menu.

4.	 There are three settings you need to adjust:

On the “New Document” tab, select “Plain text”.

On the “Open and Save” tab, select “Ignore rich text commands in
HTML files” and turn off “Append ‘.txt’ extensions to plain text files”.

5.	 When you are done, click the red button in the top-left corner.

6.	 When you create a new document, the formatting menu will no lon-
ger be there and you can save your text as an HTML document. You
can always convert a document back to rich text by selecting Format
➝ Make Rich Text when you are not using TextEdit for HTML.

Formatting menu indicates rich text Plain text documents have no menu

Figure 4-3.  Launching TextEdit and
choosing Plain Text settings in the
Preferences.

Step 1: Start with Content

Chapter 4, Creating a Simple Page 53

Step 1: Start with Content
Now that we have our new document, it’s time to get typing. A web page
always starts with content, so that’s where we begin our demonstration.
Exercise 4-1 walks you through entering the raw text content and saving the
document in a new folder.

exercise 4-1  |  Entering content
1.	 Type the content below for the home page into the new document in your text

editor. Copy it exactly as you see it here, keeping the line breaks the same for the
sake of playing along. The raw text for this exercise is available online at www.
learningwebdesign.com/4e/materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in hip
atmosphere. The menu changes regularly to highlight the freshest
ingredients.

Catering
You have fun... we’ll handle the cooking. Black Goose Catering
can handle events from snacks for bridge club to elegant corporate
fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight

2.	 Select “Save” or “Save as” from the File menu to get the Save As dialog box
(Figure 4-4). The first thing you need to do is create a new folder that will contain
all of the files for the site (in other words, it’s the local root folder).

Windows: Click the folder icon at the top to create the new folder.

Mac: Click the “New Folder” button.

Windows 7 Mac OSX

Naming
Conventions
It is important that you follow these
rules and conventions when naming
your files:

Use proper suffixes for your files.
HTML and XHTML files must end
with .html. Web graphics must
be labeled according to their file
format: .gif, .png, or .jpg (.jpeg is
also acceptable).

Never use character spaces within
filenames. It is common to
use an underline character or
hyphen to visually separate
words within filenames, such as
robbins_bio.html or robbins-bio
.html.

Avoid special characters such as ?,
%, #, /, :, ;, •, etc. Limit filenames
to letters, numbers, underscores,
hyphens, and periods.

Filenames may be case-sensitive,
depending on your server
configuration. Consistently using
all lowercase letters in filenames,
although not necessary, is one
way to make your filenames
easier to manage.

Keep filenames short. Short names
keep the character count and file
size of your HTML file in check.
If you really must give the file a
long, multiword name, you can
separate words with hyphens,
such as a-long-document-title.
html, to improve readability.

Self-imposed conventions.  It is
helpful to develop a consistent
naming scheme for huge
sites. For instance, always
using lowercase with hyphens
between words. This takes
some of the guesswork out of
remembering what you named
a file when you go to link to it
later.

Figure 4-4.  Saving index.html in a new folder called “bistro”.

Part II, HTML Markup for Structure54

Step 1: Start with Content

Name the new folder bistro, and save the text file as index.html in it. Windows
users, you will also need to choose “All Files” after “Save as type” to prevent
Notepad from adding a “.txt” extension to your filename. The filename needs
to end in .html to be recognized by the browser as a web document. See the
sidebar “Naming Conventions” for more tips on naming files.

3.	 Just for kicks, let’s take a look at index.html in a browser. Launch your favorite
browser (I’m using Google Chrome) and choose “Open” or “Open File” from the File
menu. Navigate to index.html, and then select the document to open it in the
browser. You should see something like the page shown in Figure 4-5. We’ll talk

Figure 4-5.  A first look at the content in a browser.

Learning from step 1
Our content isn’t looking so good (Figure 4-5). The text is all run together—
that’s not how it looked in the original document. There are a couple of
things to be learned here. The first thing that is apparent is that the browser
ignores line breaks in the source document. The sidebar “What Browsers
Ignore” lists other information in the source that is not displayed in the
browser window.

Second, we see that simply typing in some content and naming the docu-
ment .html is not enough. While the browser can display the text from the
file, we haven’t indicated the structure of the content. That’s where HTML
comes in. We’ll use markup to add structure: first to the HTML document
itself (coming up in Step 2), then to the page’s content (Step 3). Once the
browser knows the structure of the content, it can display the page in a more
meaningful way.

What Browsers
Ignore
Some information in the source
document will be ignored when it is
viewed in a browser, including:

Multiple (white) spaces. When a
browser encounters more than
one consecutive blank character
space, it displays a single space.
So if the document contains:

long, long ago

the browser displays:

long, long ago

Line breaks (carriage returns).
Browsers convert carriage returns
to white spaces, so following
the earlier “ignore multiple white
spaces rule,” line breaks have
no effect on formatting the
page. Text and elements wrap
continuously until a new block
element, such as a heading (h1)
or paragraph (p), or the line break
(br) element is encountered in
the flow of the document text.

Tabs. Tabs are also converted to
character spaces, so guess what?
Useless.

Unrecognized markup. Browsers
are instructed to ignore any tag
they don’t understand or that was
specified incorrectly. Depending
on the element and the browser,
this can have varied results. The
browser may display nothing at
all, or it may display the contents
of the tag as though it were
normal text.

Text in comments. Browsers
will not display text between
the special <!-- and --> tags
used to denote a comment. See
the Adding Hidden Comments
sidebar later in this chapter.

Step 2: Give the Document Structure

Chapter 4, Creating a Simple Page 55

Step 2: Give the Document Structure
We have our content saved in an .html document—now we’re ready to start
marking it up.

Introducing…HTML elements
Back in Chapter 2, How the Web Works, you saw examples of HTML ele-
ments with an opening tag (<p> for a paragraph, for example) and closing
tag (</p>). Before we start adding tags to our document, let’s look at the
anatomy of an HTML element (its syntax) and firm up some important ter-
minology. A generic container element is labeled in Figure 4-6.

Opening tag

Element

<element name> Content here </element name>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

<h1> Black Goose Bistro </h1>

Figure 4-6.  The parts of an HTML container element.

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is
hidden and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use
the similar backslash character in end tags (see the tip Slash vs. Backslash).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We’ll
talk about empty elements a little later in this chapter.

One last thing…capitalization. In HTML, the capitalization of element
names is not important. So , , and are all the same as far as
the browser is concerned. However, in XHTML (the stricter version of
HTML) all element names must be all lowercase in order to be valid. Many
web developers have come to like the orderliness of the stricter XHTML
markup rules and stick with all lowercase, as I will do in this book.

An element consists of
both the content and its
markup.

Slash vs. Backslash
HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the standard QWERTY keyboard.

It is easy to confuse the slash with
the backslash character (\), which is
found under the bar character (|). The
backslash key will not work in tags or
URLs, so be careful not to use it.

T i p

Part II, HTML Markup for Structure56

Step 2: Give the Document Structure

Basic document structure
Figure 4-7 shows the recommended minimal skeleton of an HTML5 docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to
explicitly organize documents with the proper structural markup. And if
you are writing in the stricter XHTML, all of the following elements except
meta must be included in order to be valid. Let’s take a look at what’s going
on in Figure 4-7.

1 I don’t want to confuse things, but the first line in the example isn’t an
element at all; it is a document type declaration (also called DOCTYPE
declaration) that identifies this document as an HTML5 document. I
have a lot more to say about DOCTYPE declarations in Chapter 10,
What’s Up, HTML5?, but for this discussion, suffice it to say that includ-
ing it lets modern browsers know they should interpret the document as
written according to the HTML5 specification.

2 The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element. It is
used for both HTML and XHTML documents.

3 Within the html element, the document is divided into a head and a body.
The head element contains descriptive information about the document
itself, such as its title, the style sheet(s) it uses, scripts, and other types
of “meta” information.

4 The meta elements within the head element provide information about the
document itself. A meta element can be used to provide all sorts of infor-
mation, but in this case, it specifies the character encoding (the standard-
ized collection of letters, numbers, and symbols) used in the document.
I don’t want to go into too much detail on this right now, but know that
there are many good reasons for specifying the charset in every docu-
ment, so I have included it as part of the minimal document structure.

5 Also in the head is the mandatory title element.
According to the HTML specification, every document
must contain a descriptive title.

6 Finally, the body element contains everything that
we want to show up in the browser window.

Are you ready to add some structure to the Black
Goose Bistro home page? Open the index.html docu-
ment and move on to Exercise 4-2.

NO T E

Prior to HTML5, the syntax for specify-
ing the character set with the meta ele-
ment was a bit more elaborate. If you
are writing your documents in HTML
4.01 or XHTML 1.0, your meta element
should look like this:

<meta http-equiv="content-
type" content="text/html;
charset=UTF-8">

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>Title here</title>
</head>

<body>
Page content goes here.
</body>

</html>

1

2

3
4

5

6

Figure 4-7.  The minimal structure of an
HTML document.

Step 2: Give the Document Structure

Chapter 4, Creating a Simple Page 57

exercise 4-2  |  Adding basic structure
1.	 Open the newly created document, index.html, if it isn't open already.

2.	 Start by adding the HTML5 DOCTYPE declaration:

<!DOCTYPE html>

3.	 Put the entire document in an HTML root element by adding an <html> start tag
at the very beginning and an end <html> tag at the end of the text.

4.	 Next, created the document head that contains the title for the page. Insert
<head> and </head> tags before the content. Within the head element, add
informatino about the character encoding <meta charset="utf-8">, and the title,
"Black Goose Bistro", surrounded by opening and closing <title> tags.

The correct terminology is to say that the title element is nested within the
head element. We’ll talk about nesting more in later chapters.

5.	 Finally, define the body of the document by wrapping the content in <body> and
</body> tags. When you are done, the source document should look like this (the
markup is shown in color to make it stand out):

<!DOCTYPE html>
<html>

<head>
<meta charset ="utf-8">
<title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in
a hip atmosphere. The menu changes regularly to highlight the
freshest ingredients.

Catering Services
You have fun... we'll do the cooking. Black Goose catering can
handle events from snacks for bridge club to elegant corporate
fundraisers.
Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight
</body>

</html>

6.	 Save the document in the bistro
directory, so that it overwrites the
old version. Open the file in the
browser or hit "refresh" or "reload"
if it is open already. Figure 4-8
shows how it should look now.

.

Figure 4-8.  The page in a browser after
the document structure elements have
been defined.

Part II, HTML Markup for Structure58

Step 3: Identify Text Elements

Not much has changed after structuring the document, except that the
browser now displays the title of the document in the top bar or tab. If some-
one were to bookmark this page, that title would be added to his Bookmarks
or Favorites list as well (see the sidebar Don’t Forget a Good Title). But the
content still runs together because we haven’t given the browser any indica-
tion of how it should be structured. We’ll take care of that next.

Step 3: Identify Text Elements
With a little markup experience under your belt, it should be a no-brainer
to add the markup that identifies headings and subheads (h1 and h2), para-
graphs (p), and emphasized text (em) to our content, as we’ll do in Exercise
4-3. However, before we begin, I want to take a moment to talk about what
we’re doing and not doing when marking up content with HTML.

Introducing…semantic markup
The purpose of HTML is to add meaning and structure to the content. It
is not intended to provide instructions for how the content should look (its
presentation).

Your job when marking up content is to choose the HTML element that
provides the most meaningful description of the content at hand. In the biz,
we call this semantic markup. For example, the most important heading
at the beginning of the document should be marked up as an h1 because it
is the most important heading on the page. Don’t worry about what that
looks like in the browser…you can easily change that with a style sheet. The
important thing is that you choose elements based on what makes the most
sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another
creates relationships between the elements. You can think of it as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy is important because it gives browsers cues on how
to handle the content. It is also the foundation upon which we add presenta-
tion instructions with style sheets and behaviors with JavaScript. We’ll talk
about document structure more in Part III, when we discuss Cascading Style
Sheets, and in Part IV in the JavaScript overview.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.

Don’t Forget a
Good Title
Not only is a title element required
for every document, it is quite useful
as well. The title is what is displayed
in a user’s Bookmarks or Favorites
list and on tabs in desktop browsers.
Descriptive titles are also a key tool
for improving accessibility, as they are
the first thing a person hears when
using a screen reader. Search engines
rely heavily on document titles as
well. For these reasons, it’s important
to provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want
to keep the length of your titles in
check so they are able to display in
the browser’s title area. Another best
practice is to put the part of the title
with more specific information first
(for example, the page description
ahead of the company name) so that
the page title is visible when multiple
tabs are lined up in the browser
window.

Step 3: Identify Text Elements

Chapter 4, Creating a Simple Page 59

In this book, however, we’ll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in Exercise 4-3.

exercise 4-3  |  Defining text elements
1.	 Open the document index.html in your text editor, if it isn’t

open already.

2.	 The first line of text, “Black Goose Bistro,” is the main heading
for the page, so we’ll mark it up as a Heading Level 1 (h1)
element. Put the opening tag, <h1>, at the beginning of the
line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

3.	 Our page also has three subheads. Mark them up as Heading
Level 2 (h2) elements in a similar manner. I’ll do the first one
here; you do the same for “Catering” and “Location and Hours”.

<h2>The Restaurant</h2>

4.	 Each h2 element is followed by a brief paragraph of text, so
let’s mark those up as paragraph (p) elements in a similar
manner. Here’s the first one; you do the rest.

<p>The Black Goose Bistro offers casual lunch and
dinner fare in a hip atmosphere. The menu changes
regularly to highlight the freshest ingredients.
</p>

5.	 Finally, in the Catering section, I want to emphasize that
visitors should just leave the cooking to us. To make text
emphasized, mark it up in an emphasis element (em) element,
as shown here.

<p>You have fun... we'll handle the cooking

. Black Goose Catering can handle events
from snacks for bridge club to elegant corporate
fundraisers.</p>

6.	 Now that we’ve marked up the document, let’s save it as we
did before, and open (or refresh) the page in the browser.
You should see a page that looks much like the one in Figure
4-9. If it doesn’t, check your markup to be sure that you aren’t
missing any angle brackets or a slash in a closing tag.

Figure 4-9.  The home page after the content has been marked
up with HTML elements.

Now we’re getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in Figure 4-9.

Block and inline elements
Although it may seem like stating the obvious, it is worth pointing out
that the heading and paragraph elements start on new lines and do not run
together as they did before. That is because by default, headings and para-
graphs display as block elements. Browsers treat block elements as though
they are in little rectangular boxes, stacked up in the page. Each block ele-
ment begins on a new line, and some space is also usually added above and
below the entire element by default. In Figure 4-10, the edges of the block
elements are outlined in red.

Part II, HTML Markup for Structure60

Step 3: Identify Text Elements

Figure 4-10.  The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em). It does not
start a new line, but rather stays in the flow of the paragraph. That is because
the em element is an inline element. Inline elements do not start new lines;
they just go with the flow. In Figure 4-10, the inline em element is outlined
in light blue.

Default styles
The other thing that you will notice about the marked-up page in Figures 4-9
and 4-10 is that the browser makes an attempt to give the page some visual
hierarchy by making the first-level heading the biggest and boldest thing on
the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (long quotes may or may
not be indented).

If you think the h1 is too big and clunky as the browser renders it, just
change it with a style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better, for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. Now that there are style sheets for
controlling the design, you should always choose elements based on how

Adding Hidden
Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<!-- -->) will not display in the
browser and will not have any effect
on the rest of the source.

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared by
a team of developers. In this example,
comments are used to point out the
section of the source that contains
the navigation.

<!-- start global nav -->

 ...

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone. It’s
probably a good idea just to strip
out notes to your fellow developers
before the site is published. It cuts
some bytes off the file size as well.

Step 4: Add an Image

Chapter 4, Creating a Simple Page 61

accurately they describe the content, and don’t worry about the browser’s
default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

Step 4: Add an Image
What fun is a web page with no image? In Exercise 4-4, we’ll add an image
to the page using the img element. Images will be discussed in more detail
in Chapter 7, Adding Images, but for now, it gives us an opportunity to
introduce two more basic markup concepts: empty elements and attributes.

Empty elements
So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in Figure 4-1: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have text content because they are
used to provide a simple directive. These elements are said to be empty. The
image element (img) is an example of such an element; it tells the browser
to get an image file from the server and insert it at that spot in the flow of
the text. Other empty elements include the line break (br), thematic breaks
(hr),� and elements that provide information about a document but don’t
affect its displayed content, such as the meta element that we used earlier.

Figure 4-11 shows the very simple syntax of an empty element (compare to
Figure 4-4). If you are writing an XHTML document, the syntax is slightly
different (see the sidebar Empty Elements in XHTML).

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Example: The br element inserts a line break.

<element-name>

Figure 4-11.  Empty element structure.

Attributes
Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—there’s no way to know which image to
use. That’s where attributes come in. Attributes are instructions that clarify
or modify an element. For the img element, the src (short for “source”) attri-
bute is required, and specifies the location (URL) of the image file.

Empty Elements in
XHTML
In XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
Empty elements are terminated by
adding a trailing slash preceded by
a space before the closing bracket,
like so: ,
, <meta />,
and <hr />. Here is the line break
example using XHTML syntax.

<p>1005 Gravenstein Highway
North
Sebastopol, CA
95472</p>

Part II, HTML Markup for Structure62

Step 4: Add an Image

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

Figure 4-12.  An img element with attributes.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty
elements, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces.

<element attribute1="value" attribute2="value">

For another way to look at it, Figure 4-12 shows an img element with its
required attributes labeled.

Here’s what you need to know about attributes:

•	 Attributes go after the element name in the opening tag only, never in
the end tag.

•	 There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

•	 Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values can be reduced to single descriptive words, for
example, the checked attribute, which makes a checkbox checked when a
form loads. In XHTML, however, all attributes must have explicit values
(checked="checked"). You may hear this type of attribute called a Boolean
attribute because it describes a feature that is either on or off.

•	 A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You’ll see examples of
all of these throughout this book.	

•	 Some values don’t have to be in quotation marks in HTML, but XHTML
requires them. Many developers like the consistency and tidiness of quo-
tation marks even when authoring HTML. Either single or double quota-
tion marks are acceptable as long as they are used consistently; however,

Step 4: Add an Image

Chapter 4, Creating a Simple Page 63

double quotation marks are the convention. Note that quotation marks
in HTML files need to be straight (") not curly (”).

•	 Some attributes are required, such as the src and alt attributes in the
img element.

•	 The attribute names available for each element are defined in the HTML
specifications; in other words, you can’t make up an attribute for an ele-
ment.

Now you should be more than ready to try your hand at adding the img ele-
ment with its attributes to the Black Goose Bistro page in the next exercise.
We’ll throw a few line breaks in there as well.

exercise 4-4  |  Adding an image
1.	 If you’re working along, the first thing you’ll need to do is get a copy of the

image file on your hard drive so you can see it in place when you open the file
locally. The image file is provided in the materials for this chapter. You can also
get the image file by saving it right from the sample web page online at www.
learningwebdesign.com/4e/chapter04/bistro. Right-click (or Ctrl-click on a Mac)
on the goose image and select “Save to disk” (or similar) from the pop-up menu as
shown in Figure 4-13. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

2.	 Once you have the image, insert it at the beginning of the first-level heading by
typing in the img element and its attributes as shown here:

<h1>Black Goose
Bistro</h1>

The src attribute provides the name of the image file that should be inserted,
and the alt attribute provides text that should be displayed if the image is not
available. Both of these attributes are required in every img element.

Windows:
Right-click on the image to
access the pop-up menu

Mac:
Control-click on the image to
access the popup menu. The
options my vary by browser.

Figure 4-13.  Saving an image file from a page on the Web.

Part II, HTML Markup for Structure64

Step 5: Change the Look with a Style Sheet

3.	 I’d like the image to appear above the title, so lets add a line break (br) after the
img element to start the headline text on a new line.

<h1>
Black
Goose Bistro</h1>

4.	 Let’s break up the last paragraph into three lines for better clarity. Drop a

tag at the spots you’d like the line breaks to occur. Try to match the screenshot in
Figure 4-14.

5.	 Now save index.html and open or refresh it in the browser window. The page
should look like the one shown in Figure 4-14. If it doesn’t, check to make sure that
the image file, blackgoose.png, is in the same directory as index.html. If it is, then
check to make sure that you aren’t missing any characters, such as a closing quote
or bracket, in the img element markup.

Figure 4-14.  The Black Goose Bistro page with the logo image.

Step 5: Change the Look
with a Style Sheet
Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think I’d like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I’d like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In Exercise 4-5, we’ll change the appearance of the text elements and the
page background using some simple style sheet rules. Don’t worry about
understanding them all right now; we’ll get into CSS in more detail in Part
III. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

When Good Pages Go Bad

Chapter 4, Creating a Simple Page 65

exercise 4-5  |  Adding a style sheet
1.	 Open index.html if it isn’t open already.

2.	 We’re going to use the style element to apply a very simple
embedded style sheet to the page. (This is just one of the
ways to add a style sheet; the others are covered in Chapter
11, Style Sheet Orientation.)

The style element is placed inside the head of the
document. Start by adding the style element to the
document as shown here:

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
 <style>

	 </style>
</head>

3.	 Now, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know
exactly what is going on (although it is fairly intuitive). You’ll
learn all about style rules in Part III.

<style>

body {
 background-color: #faf2e4;
	 margin: 0 15%;
	 font-family: sans-serif;
	 }

h1 {
	 text-align: center;
 	 font-family: serif;
 	 font-weight: normal;
 	 text-transform: uppercase;

	 border-bottom: 1px solid #57b1dc;
	 margin-top: 30px;
}

h2 {
	 color: #d1633c;
	 font-size: 1em;
}

</style>

4.	 Now it’s time to save the file and take a look at it in the
browser. It should look like the page in Figure 4-15. If it
doesn’t, go over the style sheet code to make sure you didn’t
miss a semicolon or a curly bracket.

Figure 4-15.  The Black Goose Bistro page after CSS style rules
have been applied.

We’re finished with the Black Goose Bistro page. Not only have you written
your first web page, complete with a style sheet, but you’ve learned about
elements, attributes, empty elements, block and inline elements, the basic
structure of an HTML document, and the correct use of markup along the
way. Not bad for one chapter!

When Good Pages Go Bad
The previous demonstration went smoothly, but it’s easy for small things
to go wrong when typing out HTML markup by hand. Unfortunately, one
missed character can break a whole page. I’m going to break my page on
purpose so we can see what happens.

NO T E

Omitting the slash in the closing tag
(or even omitting the closing tag itself)
for block elements, such as headings or
paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

Part II, HTML Markup for Structure66

Validating Your Documents

What if I had forgotten to type the slash (/) in the closing emphasis tag
()? With just one character out of place (Figure 4-16), the remainder
of the document displays in emphasized (italic) text. That’s because without
that slash, there’s nothing telling the browser to turn “off” the emphasized
formatting, so it just keeps going.

I’ve fixed the slash, but this time, let’s see what would have happened
if I had accidentally omitted a bracket from the end of the first <h2> tag
(Figure 4-17).

See how the headline is missing? That’s because without the closing tag
bracket, the browser assumes that all the following text—all the way up
to the next closing bracket (>) it finds—is part of the <h2> opening tag.

Browsers don’t display any text within a tag,
so my heading disappeared. The browser just
ignored the foreign-looking element name
and moved on to the next element.

Making mistakes in your first HTML docu-
ments and fixing them is a great way to learn.
If you write your first pages perfectly, I’d
recommend fiddling with the code as I have
here to see how the browser reacts to vari-
ous changes. This can be extremely useful in
troubleshooting pages later. I’ve listed some
common problems in the sidebar Having
Problems? Note that these problems are not
specific to beginners. Little stuff like this goes
wrong all the time, even for the pros.

Validating Your
Documents
One way that professional web developers
catch errors in their markup is to validate
their documents. What does that mean? To
validate a document is to check your markup
to make sure that you have abided by all the
rules of whatever version of HTML you are
using (there are more than one, as we’ll dis-
cuss in Chapter 10, What’s Up, HTML5?).
Documents that are error-free are said to be
valid. It is strongly recommended that you
validate your documents, especially for pro-
fessional sites. Valid documents are more con-
sistent on a variety of browsers, they display
more quickly, and they are more accessible.

<h2>Catering</h2>
<p>You have fun... we'll handle the cooking. Black Goose
Catering can handle events from snacks for bridge club to elegant
corporate fundraisers.</p>

g.

Without the bracket, all the
following characters are
interpreted as part of a long,
unrecognizable element name,
and “The Restaurant” disappears
from the page.

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a hip atmosphere. The menu changes regularly to highlight
the freshest ingredients.</p>

<h2The

Missing headline

Figure 4-16.  When a slash is omitted, the
browser doesn’t know when the element
ends, as is the case in this example.

Figure 4-17.  A missing end bracket makes
all the following content part of the tag,
and therefore it doesn’t display.

Test Yourself

Chapter 4, Creating a Simple Page 67

Right now, browsers don’t require documents to be valid (in other words,
they’ll do their best to display them, errors and all), but any time you stray
from the standard you introduce unpredictability in the way the page is dis-
played or handled by alternative devices.

So how do you make sure your document is valid? You could check it
yourself or ask a friend, but humans make mistakes, and you aren’t really
expected to memorize every minute rule in the specifications. Instead, you
use a validator, software that checks your source against the HTML version
you specify. These are some of the things validators check for:

•	 The inclusion of a DOCTYPE declaration. Without it the validator
doesn’t know which version of HTML or XHTML to validate against.

•	 An indication of the character encoding for the document.

•	 The inclusion of required rules and attributes.

•	 Non-standard elements.

•	 Mismatched tags.

•	 Nesting errors.

•	 Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting errors
in HTML documents. The W3C offers a free online validator at validator.
w3.org. For HTML5 documents, use the online validator located at html5.
validator.nu. Browser developer tools like the Firebug plug-in for Firefox or
the built-in developer tools in Safari and Chrome also have validators so you
can check your work on the fly. If you use Dreamweaver to create your sites,
there is a validator built into that as well.

Test Yourself
Now is a good time to make sure you understand the basics of markup.
Use what you’ve learned in this chapter to answer the following questions.
Answers are in Appendix A.

1.	 What is the difference between a tag and an element?

2.	 Write out the recommended minimal structure of an HTML5 document.

Having Problems?
The following are some typical
problems that crop up when creating
web pages and viewing them in a
browser:

I’ve changed my document, but when
I reload the page in my browser, it
looks exactly the same.

It could be you didn’t save your
document before reloading,
or you may have saved it in a
different directory.

Half my page disappeared.
This could happen if you are
missing a closing bracket (>) or a
quotation mark within a tag. This
is a common error when writing
HTML by hand.

I put in a graphic using the img
element, but all that shows up is a
broken image icon.

The broken graphic could mean
a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure
that the URL to the image file is
correct. (We’ll discuss URLs further
in Chapter 6, Adding Links.) Make
sure that the image file is actually
in the directory you’ve specified.
If the file is there, make sure it is
in one of the formats that web
browsers can display (GIF, JPEG,
or PNG) and that it is named with
the proper suffix (.gif, .jpeg or .jpg,
or .png, respectively).

Part II, HTML Markup for Structure68

Element Review:  Document Structure

3.	 Indicate whether each of these filenames is an acceptable name for a web
document by circling “Yes” or “No.” If it is not acceptable, provide the
reason why.

	a. Sunflower.html	 Yes	 No

	b. index.doc	 Yes	 No

	c. cooking home page.html	 Yes	 No

	d. Song_Lyrics.html	 Yes	 No

	e. games/rubix.html	 Yes	 No

	f. %whatever.html	 Yes	 No

4.	 All of the following markup examples are incorrect. Describe what is
wrong with each one, and then write it correctly.

a.	

b.	 <i>Congratulations!<i>

c.	 linked text</a href="file.html">

d.	 <p>This is a new paragraph<\p>

5.	 How would you mark up this comment in an HTML document so that
it doesn’t display in the browser window?

	 product list begins here

Element Review:  Document Structure
This chapter introduced the elements that establish the structure of the doc-
ument. The remaining elements introduced in the exercises will be treated in
more depth in the following chapters.

Element Description

body Identifies the body of the document that holds the content

head Identifies the head of the document that contains information
about the document

html The root element that contains all the other elements

meta Provides information about the document

title Gives the page a title

	Preface
	Part I: Getting Started
	Chapter 1: Where Do I Start?
	Where Do I Start?
	What Does a Web Designer Do?
	What Languages Do I Need to Learn?
	What Do I Need to Buy?
	What You’ve Learned
	Test Yourself

	Chapter 2: How the Web Works
	The Internet Versus the Web
	Serving Up Your Information
	A Word About Browsers
	Web Page Addresses (URLs)
	The Anatomy of a Web Page
	Putting It All Together
	Test Yourself

	Part II: HTML Markup for Structure
	HTML Markup for Structure
	Chapter 4: Creating a Simple Page
	A Web Page, Step by Step
	Before We Begin, Launch a Text Editor
	Step 1: Start with Content
	Step 2: Give the Document Structure
	Step 3: Identify Text Elements
	Step 4: Add an Image
	Step 5: Change the Look
with a Style Sheet
	When Good Pages Go Bad
	Validating Your Documents
	Test Yourself
	Element Review: Document Structure

